Preliminary P_{1n} and P_{2n} Calculations Including Background Coincidences for BRIKEN RUN148

B.C. Rasco, R. Yokoyama, N.T. Brewer for the BRIKEN Collaboration 20/10/2017

Some Preliminary Results

Nucleus	Q _β (MeV)	Q _{βn} (MeV)	Q _{βnn} (MeV)	P _n (%)	P _{2n} (%)	P _n (Lit) (%)	P _{2n} (Lit) (%)
⁷⁷ Cu	10.3	5.7	-2.2	29(1)	0.0(5)	30.3(2)	0.0
⁷⁸ Cu	13.0	6.2	1.6	39.5(5)	0.0(5)	65(20)/ 44(5)	
⁷⁹ Cu	11.5	7.5	0.9	62.6(5)	0.0(5)	55(17)/ 72(12)	
⁸⁰ Cu	15.2	8.9	5.1	57.5(1)	0.0(+5,-10)	?	
⁸¹ Cu	14.4	11.8	5.9	73.0(5)	0.0(+5,-10)	?	
⁸⁴ Ga	13.9	8.8	5.2	37.5(10)	1.5(5)	74/20/ 51	
⁸⁵ Ga	13.1	10.2	5.0	74.5(10)	1.5(1)	35/>40/ 70(5)	
⁸⁶ Ga	15.3	11.0	7.9	59.0(5)	16(1)	60(10)	20(10)
⁸⁷ Ga	14.5	12.1	7.7	65.5(5)	17.0(5)	?	?

Uncertainties are from fit only.

Many other uncertainties to be included.

Some Preliminary Results

Nucleus	Q _β (MeV)	Q _{βn} (MeV)	Q _{βnn} (MeV)	P _n (%)	P _{2n} (%)	P _n (Lit) (%)	P _{2n} (Lit) (%)
⁷⁷ Cu	10.3	5.7	-2.2	29(1)	0.0(5)	30.3(2)	0.0
⁷⁸ Cu	13.0	6.2	1.6	39.5(5)	0.0(5)	65(20)/ 44(5)	
⁷⁹ Cu	11.5	7.5	0.9	62.6(5)	0.0(5)	55(17)/ 72(12)	
⁸⁰ Cu	15.2	8.9	5.1	57.5(1)	0.0(+5,-10)	?	
⁸¹ Cu	14.4	5.9	5.9	73.0(5)	0.0(+5,-10)	?	
⁸⁴ Ga	13.9	8.8	5.2	37.5(10)	5(5)	74/20/ 51	
⁸⁵ Ga	13.1	10.2	5.0	74.5(10)	1.5(1)	35/>40/ 70(5)	
⁸⁶ Ga	15.3	11.0	7.9	59.0(5)	16(1)	60(10)	20(10)
⁸⁷ Ga	14.5	12.1	7.7	65.5(5)	17.0(5)	?	?

Uncertainties are from fit only.

Many other uncertainties to be included.

List possible implants, beta triggers, neutrons, and random neutrons.

Flat background terms *i.e.* no $T_{\beta n}$ dependence Real decay terms, *i.e.* $T_{\beta n}$ dependent terms.

{Implant}	$\{ \beta \}$	$\{Neutron\}$	{Associated P_{jn} }	{Number Neutrons}
r_I	r_{eta}	r_{0n}	_	0
r_I	r_{eta}	r_{1n}	—	1
r_I	r_{eta}	r_{2n}	_	2
r_I	$\tilde{\varepsilon}_{\beta 0 n}$	r_{0n}	\tilde{P}_{0n} (no T dep)	0
r_I	$\tilde{\varepsilon}_{\beta 0 n}$	r_{1n}	\tilde{P}_{0n} (no T dep)	1
r_I	$\tilde{\varepsilon}_{\beta 0n}$	r_{2n}	\tilde{P}_{0n} (no T dep)	2
r_{I}	$\tilde{\varepsilon}_{\beta 1 n}$	$\tilde{\epsilon}_{11n}r_{0n}$	\tilde{P}_{1n} (no T dep)	1
r_I	$\tilde{\varepsilon}_{\beta 1 n}$	$\tilde{\epsilon}_{11n}r_{1n}$	\tilde{P}_{1n} (no T dep)	2
r_I	$\tilde{\varepsilon}_{\beta 1 n}$	$\tilde{\epsilon}_{11n}r_{2n}$	\tilde{P}_{1n} (no T dep)	3
r_I	$\tilde{\varepsilon}_{\beta 1 n}$	$\tilde{\epsilon}_{10n}r_{0n}$	\tilde{P}_{1n} (no T dep)	0
r_I	$\tilde{\varepsilon}_{\beta 1 n}$	$\tilde{\epsilon}_{10n}r_{1n}$	\tilde{P}_{1n} (no T dep)	1
r_I	$\tilde{\varepsilon}_{\beta 1n}$	$\tilde{\epsilon}_{10n}r_{2n}$	\tilde{P}_{1n} (no T dep)	2
ϵ_I	r_{eta}	r_{0n}	_	0
ϵ_I	r_{eta}	r_{1n}	_	1
ϵ_I	r_{eta}	r_{2n}	—	2

r_{x} = random x

 ε_x = efficiency of detecting x

 ε_{ikn} the probability to detect k neutrons if j are emitted

 P_{in} = j neutron emission fraction *x* tilde = all implants including nuclei considered which has $T_{\beta n}$ dependence with arbitrary start time so no $T_{\beta n}$ dependence overall!

{Implant}	$\{ \beta \}$	{Neutron}	{Associated P_{jn} }	{Number Neutrons}
ϵ_I	$\varepsilon_{\beta 0 n}$	r_{0n}	$P_{0n} (T \text{ dep})$	0
ϵ_I	$\varepsilon_{\beta 0 n}$	r_{1n}	$P_{0n} (T \text{ dep})$	1
ϵ_I	$\varepsilon_{\beta 0 n}$	r_{2n}	$P_{0n} (T \text{ dep})$	2
ϵ_I	$\varepsilon_{\beta 1 n}$	$\epsilon_{11n}r_{0n}$	$P_{1n} (T \text{ dep})$	1
ϵ_I	$\varepsilon_{\beta 1n}$	$\epsilon_{11n}r_{1n}$	$P_{1n} (T \text{ dep})$	2
ϵ_I	$\varepsilon_{\beta 1 n}$	$\epsilon_{11n}r_{2n}$	$P_{1n} (T \text{ dep})$	3
ϵ_I	$\varepsilon_{\beta 1n}$	$\epsilon_{10n}r_{0n}$	$P_{1n} (T \text{ dep})$	0
ϵ_I	$\varepsilon_{\beta 1n}$	$\epsilon_{10n}r_{1n}$	$P_{1n} (T \text{ dep})$	1
ϵ_I	$\varepsilon_{\beta 1n}$	$\epsilon_{10n}r_{2n}$	P_{1n} (T dep)	2

Two neutron decay terms, *i.e.* also $T_{\beta n}$ dependent terms.

$\{Implant\}$	$\{ \beta \}$	$\{Neutron\}$	Associated P_{xn}	{ Number of Neutrons }
ϵ_I	$\varepsilon_{\beta 2n}$	$\epsilon_{2,2n}r_{0n}$	P_{2n}	2
ϵ_I	$\varepsilon_{\beta 2n}$	$\epsilon_{2,2n}r_{1n}$	P_{2n}	3
ϵ_I	$\varepsilon_{\beta 2n}$	$\epsilon_{2,1n}r_{0n}$	P_{2n}	1
ϵ_I	$\varepsilon_{\beta 2n}$	$\epsilon_{2,1n}r_{1n}$	P_{2n}	2
ϵ_I	$\varepsilon_{\beta 2n}$	$\epsilon_{2,1n}r_{2n}$	P_{2n}	3
ϵ_I	$\varepsilon_{\beta 2n}$	$\epsilon_{2,0n}r_{0n}$	P_{2n}	0
ϵ_I	$\varepsilon_{\beta 2n}$	$\epsilon_{2,0n}r_{1n}$	P_{2n}	1
ϵ_I	$\varepsilon_{\beta 2n}$	$\epsilon_{2,0n}r_{2n}$	P_{2n}	2
ϵ_I	$\varepsilon_{\beta 2n}$	$\epsilon_{2,0n}r_{3n}$	P_{2n}	3
3	Neutron	and	Greater	Decays
:	:	:	:	:

List ways to add up implants, beta triggers, neutrons, and random neutrons versus number of neutrons detected.

$$\frac{N_0'}{N} = F_0 + \epsilon_I P_{0n} \varepsilon_{\beta 0n} r_{0n} + \epsilon_I P_{1n} \varepsilon_{\beta 1n} \epsilon_{10n} r_{0n}$$

$$\frac{N_1'}{N} = F_1 + \epsilon_I P_{0n} \varepsilon_{\beta 0n} r_{1n} + \epsilon_I P_{1n} \varepsilon_{\beta 1n} \epsilon_{11n} r_{0n} + \epsilon_I P_{1n} \varepsilon_{\beta 1n} \epsilon_{10n} r_{1n}$$

$$\frac{N_2'}{N} = F_2 + \epsilon_I P_{0n} \varepsilon_{\beta 0n} r_{2n} + \epsilon_I P_{1n} \varepsilon_{\beta 1n} \epsilon_{11n} r_{1n} + \epsilon_I P_{1n} \varepsilon_{\beta 1n} \epsilon_{10n} r_{2n}$$

Total N'_{j} number of counts (includes flat background) F_{j} = sum of flat background terms for j detected neutrons

Solve for P_{jn} . Notice minimal impact of implant efficiency, β efficiency, and rate of zero neutron background coincidence on P_{i} .

$$\begin{pmatrix} N_0/N\\N_1/N\\N_2/N \end{pmatrix} = \begin{pmatrix} N'_0/N\\N'_1/N\\N'_2/N \end{pmatrix} - \begin{pmatrix} F_0\\F_1\\F_2 \end{pmatrix} = \epsilon_I \varepsilon_\beta r_{0n} (E) \begin{pmatrix} P_{0n}\\P_{1n}\\P_{2n} \end{pmatrix}$$

with

 $(E) = \begin{pmatrix} 1 & a_1 \epsilon_{10n} & a_2 \epsilon_{20n} \\ r_{1n}/r_{0n} & a_1 \left(\epsilon_{11n} + \epsilon_{10n} r_{1n}/r_{0n}\right) & a_2 \left(\epsilon_{21n} + \epsilon_{20n} r_{1n}/r_{0n}\right) \\ r_{2n}/r_{0n} & a_1 \left(\epsilon_{11n} r_{1n}/r_{0n} + \epsilon_{10n} r_{2n}/r_{0n}\right) & a_2 \left(\epsilon_{22n} + \epsilon_{21n} r_{1n}/r_{0n} + \epsilon_{20n} r_{2n}/r_{0n}\right) \end{pmatrix}$

and $a_j = \varepsilon_{bjn} / \varepsilon_{b0n}$ = relative electron efficiency for β s emitted with j neutrons and N_i = Real count for j neutrons.

$$\begin{pmatrix} P_0 \\ P_1 \\ P_2 \end{pmatrix} = \frac{1}{\epsilon_I \varepsilon_\beta r_{0n} N} \left(E \right)^{-1} \begin{pmatrix} N_0 \\ N_1 \\ N_2 \end{pmatrix} .$$

How do we measure N_0 , N_1 , and N_2 ? Integrate over 1 half-life and then add in Bateman correction for no neutron daughters in N_0 . For certain nuclei more needs to be included. For example ones with high P_n . This is on the to do list which will affect decays further from stability.

Half-lives are taken from literature or from the P_{2n} versus time histogram if unknown.

The P_{2n} decay curves should have the cleanest $T_{\beta n}$ dependence of all of the time curves.

For all of the calculations we assume a 0.60 (60%) single neutron efficiency.

Approach to Calculating N_j

 $P_{1n} = 29(1)\% P_{2n} = 0.0(5)\%$

 $P_{1n} = 59.0(5)\% P_{2n} = 16(1)\%$

Example: 100% P_{1n} Feeding

For $N_0 = 400$, $N_1 = 600$, $N_2 = 0$, and no noise, $P_{1n} = 1.0$, $P_{2n} = 0.0$. It Works!

Example: 100% P_{2n} Feeding

For $N_0 = 160$, $N_1 = 480$, $N_2 = 360$, and no noise, $P_{1n} = 0.0$, $P_{2n} = 1.0$. It Works!

All other values will work since they are literally a linear combo of this and the previous slide. For some parameters the matrix is near singular, but not in general for our high neutron efficiency and other β-efficiency parameters.

Example: ⁸⁶Ga T_{1/2} (lit)=43(+21-15)ms, P₁₀(lit) =0.6±0.1, P₂₀(lit) =0.2±0.1

P1n

P2n

Input: Number counts in N₀, N₁, and N₂ less than T_{1/2} and then N₀ corrected by approximate Bateman Equation. Can use estimated noise from ⁷⁷Cu and other P_{2n} = 0. $T_{1/2} = 52(5)$ ms from P_{2n} counts versus time.

Observations

Many of our values are smaller than previous values. This seems OK since nobody else seems to consider in a quantitative way background counts, aka false positive neutron events.

Half-lives we get from the two neutron curves seem acceptable, though further thought should be given to this to make sure.

 P_{2n} is zero for all energetically forbidden P_{2n} decays. We can (and do) use this information to estimate the noise levels.

Errors do NOT include anything other than the variance of the noise fits shown in the P_{1n} and P_{2n} graphs.

Improvements/Plans

Need to include daughter neutron decays in Bateman correction. *i.e.* daughter decays in the N_1 and N_2 channels and their cross talk.

Vary the number of counts per neutron channel in order to get statistical uncertainties for the P_{in}.

Check influence of neutron efficiency on P_{in}.

Check influence of β_{xn} efficiency on P_{jn} .

Extra Slides

N₀ Bateman Correction

Blue is approximate, rust color is exact equation.