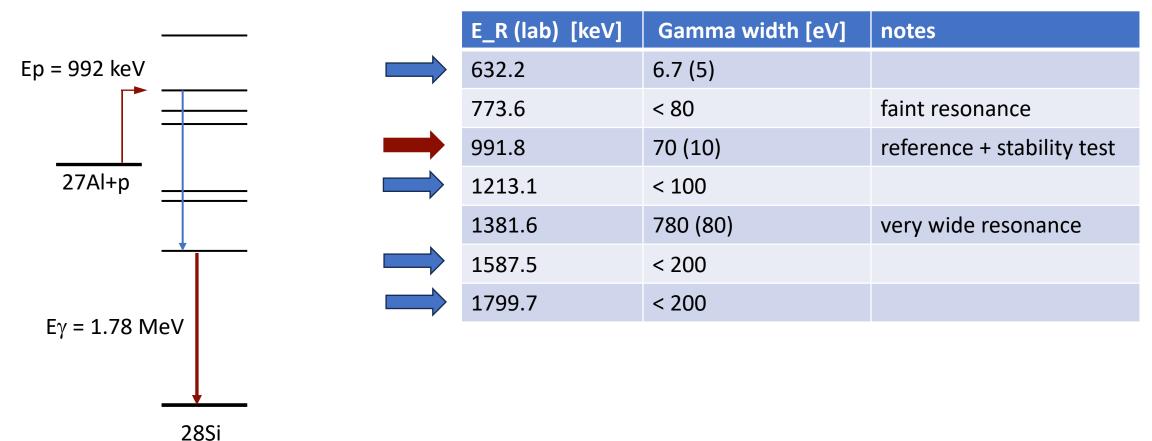
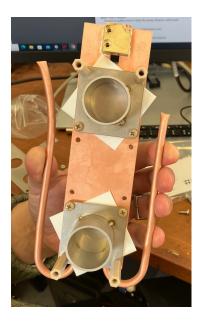

Energy Calibration of the 2.5MV Pelletron at the Dalton Cumbrian Facility

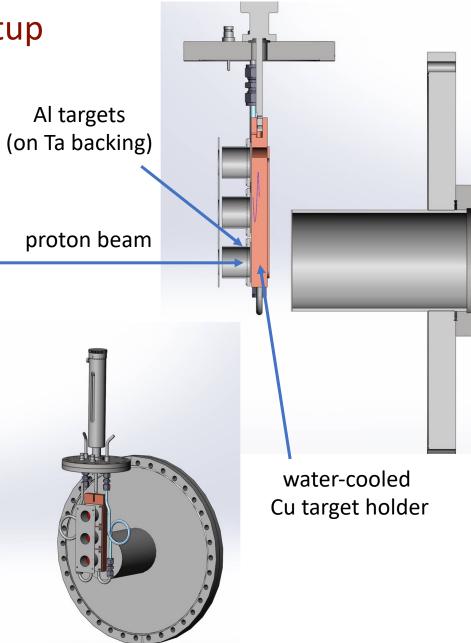
Experiment 141


Goal: Energy calibration of the 2.5MV Single-ended Pelletron accelerator at Dalton Cumbria Facility

Method: thick-target yield measurement of resonance strengths in well-known ${}^{27}Al(p,\gamma){}^{28}Si$ reaction

Setup: proton beam (of various energies) onto ²⁷Al target + γ -ray detector (Nal or similar)


Well-known Resonances in ${}^{27}Al(p,\gamma){}^{28}Si$



not to scale

Experimental Setup

detector (Nal)

Standard NIM electronics DAQ: MAESTRO running on desktop

all equipment provided by Edinburg, except water-cooling system

Thick-target Resonant Yield

Experimental Procedure (for each resonance)

- 1. set beam energy above resonance energy
- 2. acquire gamma-ray spectrum ($E\gamma = 1.78 \text{ MeV}$)
- 3. calculate yield
- 4. lower beam energy
- 5. repeat [2-4] to fully scan resonance energy
- 6. associate mid point of rising edge to known E_res
- 7. determine calibration function (E vs HV)

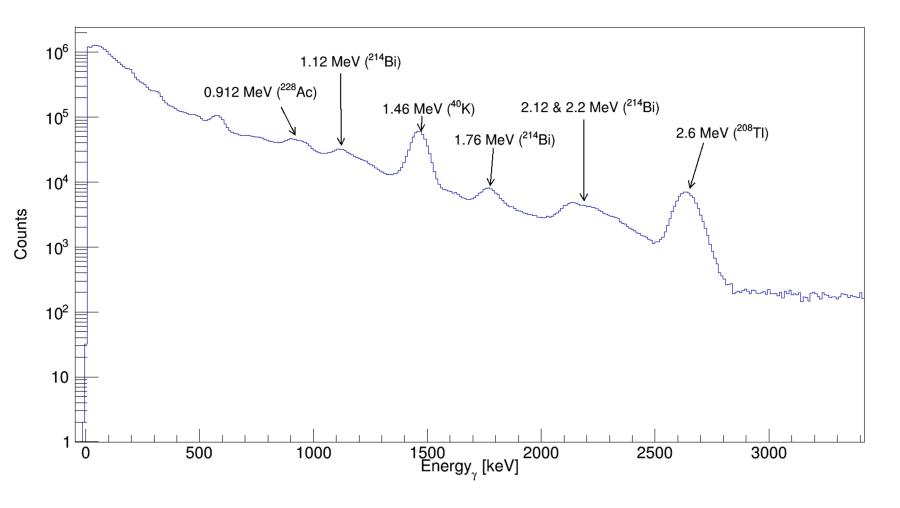
E_R (lab) [keV]	Gamma width [eV]	notes
632.2	6.7 (5)	
773.6	< 80	faint resonance
991.8	70 (10)	reference + stability test
1213.1	< 100	
1381.6	780 (80)	very wide resonance
1587.5	< 200	
1799.7	< 200	

Experimental Procedure

rather than changing beam setting parameters at each resonance in small increments, obtain resonance scan by applying HV to target (up to \sim 2.5kV in 100V steps)

- 1. start with nominal beam energy (above resonance)
- 2. bias target and collimator (with constant DV = -300 V)
- 3. send beam on target
- 4. acquire γ -ray spectrum
- 5. stop beam in FC
- 6. change bias to target and collimator
- 7. repeat [3-6] until resonance scan is completed

depending on resonance strength and beam current,

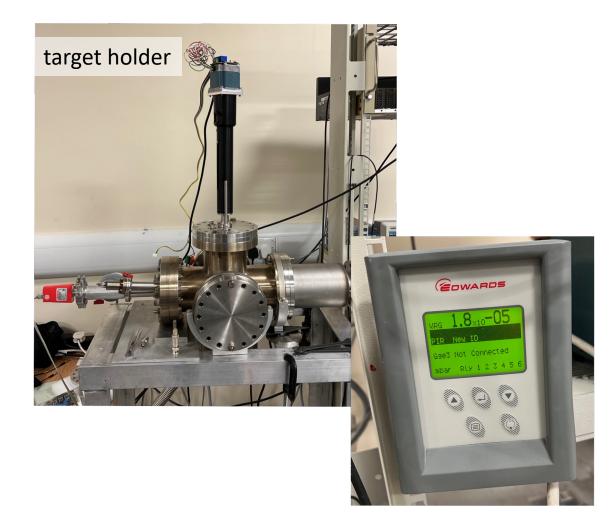

each scan could be completed in a few hours

collimators kept at -300 V wrt target

> cylinder + target (electric contact) bias target to +HV to slow reduce beam energy

Current Status of Preparation

Detector Calibration (already performed, to be repeated)



Detector 1 Serial No. 60022-01305-1

Vacuum Tests in progress

Still to be done...

- check target positioning on target ladder
- test water-cooling system
- assemble entire setup and vacuum test
- (re-)calibrate both detectors
- check scripts for target ladder movement and for target-bias supply work well
- bias target and collimator under vacuum (check no sparks occur)
- .
- prepare paperwork to access DCF

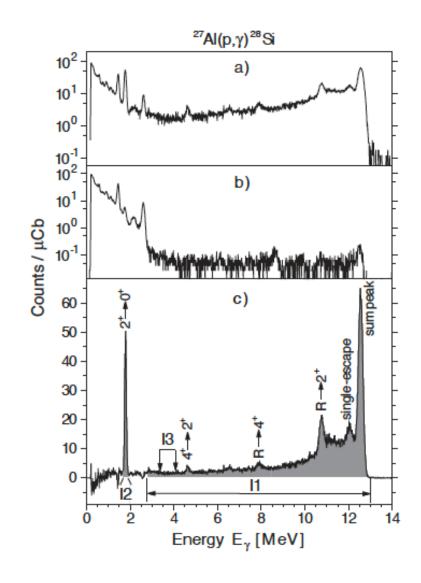

Reazione	$E_p(\mathrm{keV})$	$\Gamma_{CM}(\text{keV})$	
$^{27}\mathrm{Al}(\mathrm{p},\gamma)^{28}\mathrm{Si}$	$991.86 {\pm} 0.03$	$0.070 {\pm} 0.014$	
$^{27}\mathrm{Al}(\mathrm{p,p'}\gamma)^{27}\mathrm{Al}$	$1664.4{\pm}0.2$	$0.45{\pm}0.05$	
	$1683 {\pm} 0.13$	< 0.2	
$^{27}\mathrm{Al}(\mathrm{p,p})^{27}\mathrm{Al}$	2876 ± 2	$4.0{\pm}0.2$	
$^{16}{ m O(p,p)^{16}O}$	3470 ± 5	$1.53{\pm}0.2$	
$^{12}{ m C}({ m p,p})^{12}{ m C}$	4808 ± 10	$11.0 {\pm} 0.5$	

Table 1. Thick target yields Y_{∞} and resonance strengths $\omega\gamma$. The resonance energies $E_{\rm R}$ have been adopted from [3]. The given Y_{∞} values are the average result of at least two independent efficiency corrected yields that have been determined using different targets.

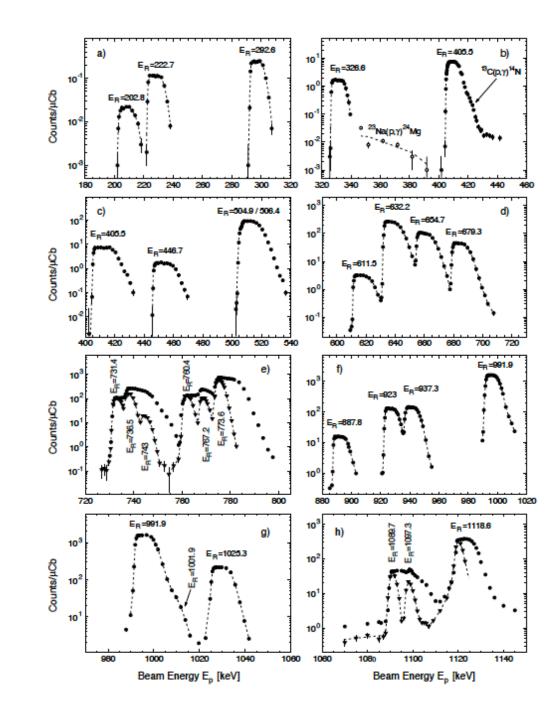

				-	
$\frac{E_{\mathrm{R}}}{(\mathrm{keV})}$	Y_{∞} (Counts/ μ C)	(eV)	$\begin{array}{c} E_{\rm R}^{\rm lab} & {\rm Present} \\ (\rm keV) & \omega\gamma \ (eV) \end{array}$	NACRE [6] $\omega \gamma$ (eV)	Others (the refs. are given in brackets at the end of the coressponding $\omega\gamma$ values) $\omega\gamma$ (eV)
202.8	0.094(13)	$1.10(15) \times 10^{-5}$	202.8 $1.10(15) \times 10^{-5}$	$1.4(7) \times 10^{-5}$	$1.4(7) \times 10^{-5}$ [22]
222.7	0.40(3)	$5.0(4) \times 10^{-5}$	222.7 $5.0(4) \times 10^{-5}$	$9(2) \times 10^{-5}$	$11.4(35) \times 10^{-5}$ [21], $7.8(25) \times 10^{-5}$ [18]
292.6		$2.80(15) \times 10^{-4}$	292.6 $2.80(15) \times 10^{-4}$	$3.8(7) \times 10^{-4}$	$3.7(11) \times 10^{-4}$ [21], $3.5(18) \times 10^{-4}$ [18]
	1.9(1)		$326.6 \ 2.10(11) \times 10^{-3}$	$1.5(3) \times 10^{-3}$	$1.71(53) \times 10^{-3}$ [21], $2.3(5) \times 10^{-3}$ [18], $1.92(42) \times 10^{-3}$ [8], $0.8(3) \times 10^{-4}$ [20]
326.6	13.3(7)	$2.10(11) \times 10^{-3}$	405.3 $1.04(5) \times 10^{-2}$	$0.9(1) \times 10^{-2}$	$0.71(22) \times 10^{-2}$ [21], $1.25(25) \times 10^{-2}$ [18], $1.0(2) \times 10^{-2}$ [8], $0.65(28) \times 10^{-4}$ [20]
405.3	58(3)	$1.04(5) \times 10^{-2}$	446.7 $1.80(15) \times 10^{-3}$	$1.4(2) \times 10^{-3}$	$1.43(44) \times 10^{-3}$ [21], $1.5(5) \times 10^{-3}$ [8], $1.42(61) \times 10^{-3}$ [20]
446.7	9.4(7)	$1.80(15) \times 10^{-3}$	504.9 $3.1(4) \times 10^{-2}$	$6.1(7) \times 10^{-2}$	$3.7(12) \times 10^{-2}$ [17], $4.5(19) \times 10^{-2}$ [20]
504.9	151(19)	$3.1(4) \times 10^{-2}$	506.4 $4.1(5) \times 10^{-2}$	$4.2(9) \times 10^{-2}$	$3.7(12) \times 10^{-2}$ [17], $5.5(24) \times 10^{-2}$ [20]
506.4	204(24)	$4.1(5) \times 10^{-2}$	$611.5 5.8(7) \times 10^{-3}$	$4(1) \times 10^{-3}$	$14.3(44) \times 10^{-3}$ [21], $4.92(75) \times 10^{-3}$ [20]
611.5	26(3)	$5.8(7) \times 10^{-3}$	632.2 0.29(3)	0.266(14)	0.286(88) [21], $0.208(53)$ [17], $0.442(67)$ [23], $0.25(3)$ [8] $0.30(4)$ [24], $0.26(3)$ [25]
632.2	1296(130)	0.29(3)		0.40(0)	0.268(13) [26], $0.216(43)$ [27]
654.7			654.7 0.12(1)	0.12(9)	0.114(35) [21], $0.125(33)$ [17], $0.116(14)$ [8], $0.125(26)$ [25], $0.129(56)$ [20]
	538(53)	0.12(1)	$679.3 5.8(6) \times 10^{-2}$	$4.5(5) \times 10^{-2}$	
679.3	249(26)	$5.8(6) \times 10^{-2}$	731.4 0.142(8)	0.12(1)	0.114(35) [21], $0.15(4)$ [17], $0.129(16)$ [8], $0.110(47)$ [20]
731.4	591(34)	0.142(8)	736.5 0.175(15)	0.160(16)	0.157(48) [21], $0.167(50)$ [17], $0.159(21)$ [8], $0.181(78)$ [20] $0.86(88) \times 10^{-2}$ [91] $1.49(4) \times 10^{-2}$ [17] $0.67(78) \times 10^{-2}$ [9]
736.5	726(52)	0.175(15)	743.0 2.30(25) $\times 10^{-2}$		
743.0	94(10)	$2.30(25) \times 10^{-2}$	$\begin{array}{rrr} 760.4 & 0.14(1) \\ 767.2 & 0.200(15) \end{array}$	0.135(16)	0.143(44) [21], $0.133(42)$ [17], $0.126(17)$ [8], $0.181(78)$ [20]
760.4	556(39)	0.14(1)	773.6 0.42(4)	$0.16(2) \\ 0.41(3)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
767.2	802(57)	0.200(15)	113.6 0.42(4)	0.41(3)	0.437(141) [21], $0.39(13)$ [26], $0.438(142)$ [29], $0.408(30)$ [8], $0.442(63)$ [24], 0.613(264) [20], $0.383(77)$ [27]
773.6	1696(170)	0.42(4)	887.8 $1.20(15) \times 10^{-2}$	$1.5(2) \times 10^{-2}$	
887.8	44(5)	$1.20(15) \times 10^{-2}$	923.0 0.145(15)	0.140(18)	0.171(53) [21], $0.130(17)$ [8], $0.213(92)$ [20], $0.140(13)$ [7]
923.0	551(55)	0.145(15)	937.3 0.19(2)	0.176(21)	0.171(53) [21], $0.175(53)$ [30], $0.175(25)$ [8], $0.194(10)$ [20], $0.183(17)$ [7]
			991.9 2.00(15)	1.9(1)	3.17(50) [31], 1.83(20) [8], 1.88(23) [25], 1.93(13) [26], 2.00(17) [32], 1.94(7) [7]
937.3	721(72)	0.19(2)	1025.3 0.36(4)	0.31(3)	0.314(97) [21], $0.325(42)$ [8], $0.245(106)$ [20], $0.342(68)$ [27], $0.35(3)$ [7]
991.9	7308(517)	2.00(15)	1089.7 0.084(6)	0.08(1)	0.071(22) [21], $0.090(11)$ [8], $0.065(28)$ [20], $0.080(23)$ [27]
1025.3	1318(132)	0.36(4)	1097.3 0.042(4)	0.04(1)	0.034(11) [21], $0.045(5)$ [8], $0.029(13)$ [20], $0.043(12)$ [7]
1089.7	303(22)	$8.4(6) \times 10^{-2}$	1118.6 0.85(9)	0.73(13)	0.60(18) [21], $1.208(125)$ [33], $0.85(9)$ [8], $1.208(125)$ [34], $0.708(75)$ [35],
1097.3	150(16)	$4.2(4) \times 10^{-2}$			0.574(247) [20], $0.80(6)$ [7]
1118.6	2978(298)	0.85(9)			

Table 4. Compilation of resonance strengths for ${}^{27}\text{Al}(\mathbf{p},\gamma){}^{28}\text{Si}$ at $E_p = 0.2-1.12$ MeV.

Harissopulos EPJA 9 (2020) 479

Harissopulos EPJA 9 (2020) 479

