

Summary of AIDA Tests 2022-3

Tom Davinson

School of Physics & Astronomy

Background

The 2022 campaign highlighted some AIDA issues – in particular

24cm x 8cm 'triple' AIDA DSSSD strip lengths – p+n side 7.5cm, n+n side 22.5cm n+n Ohmic strip noise higher than expected & unstable

Subsequent detailed, systematic tests at GSI (S4 & CRYRING), STFC DL, CERN (n_TOF/EAR2 & HIE-ISOLDE) of <u>all</u> AIDA system components and DESPEC ac mains power during 2022/3 identified issues with

- pulser
- sum & invert amplifier
- detector bias
- AC coupling

New AIDA adaptor PCB

AIDA adaptor PCB

- connects AIDA front end electronics (FEE64) to DSSSD
- provides AC coupling for ASIC
- provides connections for test and detector bias

OLD rev A 120418 design improvements identified by tests

NEW rev B specification completed March 2023

rev B 120623 PCBs available for tests July 2023

Per strip preamplifier outputs – no cabling or DSSSD – y-axis = 122mV, x-axis = 20µs

24cm x 8cm 'triple' DSSSD - n+n Ohmic strips

Per strip preamplifier outputs – y-axis range = 244mV, x-axis range = 20µs

24cm x 8cm 'triple' DSSSD – p+n junction strips

FEE64 aida01 rate/channel (Hz) – 100keV threshold

Further tests with thresholds 50-90keV confirm 5σ threshold c. 90-100keV Most channels (\sim 60-62 of 64) < 1Hz 2-4 'hot' channels per FEE64 at physical boundaries of FEE64

- 'hot' channels less hot

Summary

Typical electronic noise (keV FWHM) 24cm x 8cm 'triple' DSSSD

OLD May 2022

• p+n junction strip ~ 90

• n+n Ohmic strip ~ 300

NEW Oct 2023

• p+n junction strip ~ 45

• n+n Ohmic strip ~ 75

New values consistent with calculated noise for 'triple' DSSSD input load (capacitance and leakage current). Will continue to optimise.

Noise of 'hot' channels ~ 70-80 keV FWHM

Further information see

https://elog.ph.ed.ac.uk/DESPEC/522 https://elog.ph.ed.ac.uk/AIDA/907

Thanks

Many thanks to

Edinburgh - Oscar Hall, Richard Taylor

GSI – Helena Albers, Jeroen Bormans, Carole Chatel, Nic Hubbard

Postscript - December 2023

- AIDA noise stable with respect to multiple mechanical assembly cycles improvements are robust
- AIDA noise stable with respect to installation and operation of bPlas
 AIDA and bPlas interoperable