AIDA GELINA BRIKEN nToF CRIB ISOLDE CIRCE nTOFCapture DESPEC DTAS EDI_PSA 179Ta CARME StellarModelling DCF K40
  nTOFCapture, Page 3 of 4  ELOG logo
ID Date Author Subjectdown
  13   Fri Aug 7 10:57:10 2020 RuchiMonday meeting slides: 03 Aug
  6   Mon Jul 27 17:40:41 2020 Nikolay SosninMeeting Slides (Calibrations + WFs)
  3   Fri Nov 3 15:06:51 2017 ClaudiaMeasurement Schedule updated
  5   Fri Jul 3 14:01:38 2020 ClaudiaLink to Ruchi's list of runs + description

 https://docs.google.com/spreadsheets/d/1W1T2rC10UtOtrAaT8-ZAKFvX70v2PwDk_4-goYL-brI/edit?usp=sharing

  30   Thu Jun 29 09:21:13 2023 AnnieInfo on Samples

Both Au samples (20mm and 22mm) are single mylar.

Both Si30 (22mm) and natSi (20mm) are double mylar.

Empty is single mylar ONLY

Dummy is double mylar + glue 

  66   Fri Jun 7 15:58:24 2024 CLWISOFLEX Certificates for enriched Si samples

Isoflex certificates for enriched silicon samples

  29   Thu Jun 22 10:37:39 2023 AnnieGold 22mm Sample Images

New 22mm sample compared to old 20mm sample used at the beginning of the campaign + picture of dummy target in the setup.

  64   Thu Apr 4 09:50:36 2024 CLWFirst Si analysis 2024 run

Au and Si29 runs normalised by proton number show consistency (dedicated pulses, example detector 4). Plots for tof spectra zooming on one resonance and histogram of counts in this resonance divided by protons with statistical errors.

Plots were produced with the macros attached.

  26   Fri Jul 29 17:21:47 2022 RaganEnriched Si-30

Attached are the pictures of enriched Si-30 metal pieces.

  41   Fri Jul 28 12:19:10 2023 Michael DonnachieEAR2 consistency checks, PKUP BCT SILI and normalised counts

The EAR2 ratios of BCT/PKUP, BCT/SILI and PKUP/SILI plotted for each run for samples Si, Sinat, Au20, Au22 and Dummy. 

Also included is the normalised counts (counts/BCT) with 7 detectors on one plot (STED8 was ommited).  'counts' for Si was integreated over the Si resonance, for Au it was integrated over the largest resonance. For Dummy and Sinat the counts were integrated over a large range of 1e+4 to 1e+6ns. The Sinat resonance was too small for adequate statistics to only integrate over the resonance hence why a large range was used. The C6D6 normalised counts were not plotted as there seems to be issues with this detector in EAR2. 

 

  42   Mon Jul 31 12:00:02 2023 Nikolay SosninEAR2 Silicon Samples
  44   Mon Aug 28 12:21:09 2023 Michael DonnachieEAR2 STED Calibration Parameters

Calibration parameters for each STED detector: With function f=p0+p1*x+p2*x*x

Detector

p0 Value  p0 Error p1 Value p1 Error p2 Value p2 Error

STED 1

5.67257E-02
1.26442E-02
2.98739E-03
7.35717E-05
5.53612E-09
6.80573E-08
STED 2
3.28429E-02
8.70646E-03
3.65244E-03
6.73960E-05
-1.00906E-07
7.35018E-08
STED 3
4.94516E-02
9.74176E-03
3.09050E-03
6.48451E-05
4.55854E-08
5.55624E-08
STED 4
5.28963E-02
9.01234E-03
3.72607E-03
7.13115E-05
8.07590E-08
7.71976E-08
STED 5
5.72747E-02
9.19542E-03
2.91606E-03
6.10110E-05
9.73475E-08
5.75051E-08
STED 6
6.56951E-02
7.56334E-03
3.15511E-03
5.22840E-05
3.41401E-08
5.06241E-08
STED 7
4.66976E-02
8.08261E-03
3.12827E-03
5.32355E-05
7.80229E-09
5.79147E-08

A quadratic function was fitted to the reference point channel (from experimental histogram) and reference point energy (from simulation histogram). The reference point 'r' was r=mean+(FWHM/2) for a gaussian fitted to each compton edge. A quadratic function was used as it fitted the higher energy AmBe reference point better than a linear function. This is highlighted by the comparisson of "STED 2 Calibration" and "STED 2 Example Linear Fit Calibration" plots below. The p0 error is quite large and p2 error very large (larger than the parameter value in STED1) - however the parameters are highly correlated which may have inflated the error. 

CmC histograms were not used as the compton edge could not be located. 

For reference the STED 1 correlation matrix:

  p0 p1 p2
p0 1 -0.92473 0.78779
p1 -0.92473 1  -0.91714
p2 0.78779 -0.91714 1

 

  45   Mon Aug 28 14:07:23 2023 Michael DonnachieEAR2 Experiment vs Simulated Amplitude Spectrums

Attatched are the overlayed compton edges for the calibrated experimental and the GEANT4 simulations. Note p1 and p2 denotes the lower and higher energy compton edges for Yttrium. 

The experimental and simulated histograms are shifted in quite a few of these plots suggesting the calibration was not fully successful. The compton edge for AmBe was difficult to locate and may have contributed to the poor calibration. 

  40   Fri Jul 28 12:07:33 2023 Michael DonnachieEAR2 C6D6 timeshift issues

There seems to be issues with the EAR2 C6D6 T histograms. For Au the earlier run seems to be shifted for detector 2 compared to the rest. 

For Si plotted is 3 different runs 216123, 216128 and 216135 for both detectors. The histogram is messy but highlights that there is a problem. The single Si resonace should be around 20 000ns and this is only the case for run216128. 

Apologies for no legend on plots. 

Au22
det1 run216158 black
det1 run216109 red
det2 run216158 green
det2 run216109 blue

Au22
det1 run216157 black
det1 run216108 red
det2 run216157 green
det2 run216108 blue
 

  46   Tue Aug 29 10:32:35 2023 Michael DonnachieEAR1 Parasitic vs Dedicated runs

Below are the histograms of parasitic vs dedicated runs for EAR1. Also included are histograms with ambient background removed which closes the gap between parasitic and dedicated histograms. This was preformed by scaling the ambient by counts by a multiplication of (dedicated or parasitic) bunch number/ambient bunch number. There are no legends but the dedicated counts are in black and parasitic counts in red. Only included are C6D6 1 detectors but the other three detectors were equivelant. 

 

 

  56   Wed Nov 15 13:40:50 2023 ClaudiaDetermination of neutron capture yield and related corrections

Here are all the files needed for calculation of the yield. There is some information that still needs to be added to the energyandyield.c file, for example the atomic mass of your target in amu, the neutron separation energy for the compound nucleus in MeV (this is needed due to using the Weighting technique). Also, you need to add some lines  to read the tof histogram, which will then be converted in a neutron energy hisogram and then divided by the flux.

For the conversion to neutron energy we assume an approximate flight path for now. We will determine this more accurately once we have the yields and fit resonances. Emma will need to use a different flux than Annie, because we have a different spallation target. Emma's flux is preliminary, so we also should look at the SILI detectors at some point.

There are some more instances where names for rootfiles and ascii files need to be added. In the first instance, please try and add the missing information and try running the code. I haven't tested it so there may be still problem.  To run it you will need to download the 3 rootfiles into the same folder (or move somewhere else and adjust the path name in the .c file.

PLEASE set variable THRESHSCALER to 1 for now. We dont know yet what it is :-)

  61   Sat Mar 23 15:06:44 2024 NickDetector Setup - 28/29Si Campaign 2024

Campaign started yesterday. C6D6s placed at 9 cm distance, angle 125 degrees w.r.t beamline.

Measured calibration sources: Cs137, Y88, AmBe, CmC. Measuring Si-nat over the weekend.

Detector          Voltage

    C6D6_D_1 1550          
    C6D6_E_2 1590          
    C6D6_H_3 1460          
    C6D6_L_4 1450

 

  2   Fri Nov 3 11:22:43 2017 ClaudiaDetector Configuration

Distance Sample to Detector: Det1: ~10.5 cm, Det2: 11 cm, Det3: 11 cm, Det4: 11 cm

 

  7   Mon Aug 3 14:27:18 2020 Nikolay SosninDead-time and BG Subtraction Meeting Slides

My TTOFSort macro is located in

/afs/cern.ch/work/n/nsosnin/public/C6D6_Calibration/Calibration_Data/Calibrator.C

  58   Fri Dec 1 15:34:01 2023 ARCorrected BG Subtraction plots for Zn and Au

Updated plots for Zn and Au

ELOG V3.1.4-unknown