| ID |
Date |
Author |
Subject |
|
551
|
Sun Apr 2 04:40:00 2017 |
DK | BigRIPS Summary Info | It is all saved locally file:///homes/npg/Documents/2017Ca/
Although, a little more hacking is required to get the view.html webpage to allow you to click each run
Whether or not it is useful I don't know, but it was generated by a shell script
/homes/npg/Documents/bigrips_summary.sh which can be modified and used for future experiments. |
|
857
|
Thu Jun 20 07:35:46 2019 |
CA, TD | Bias & leakage current spreadsheet |
https://docs.google.com/spreadsheets/d/12hgbrywB10hGsKt5uc2HnLfZymh8_uvM6cEASbbqnBE/edit#gid=1560332343 |
|
219
|
Wed May 11 06:01:16 2016 |
AE, VP, BM | Beta trigger | Please find attached the best diagram of the beta trigger logic circuit for EURICA campaign 2016 |
|
515
|
Fri Dec 2 06:41:25 2016 |
DK | Benchmarks for compression | R45_17 as the test file, which was closed at 9.02 AM Friday, December 2nd at the end of the official parasitic
machine time on Fallon et al.
===Summarized results===
Initial file is 2.0 GB of AIDA data
LZMA: 862M; Time: 23 min
BZ2: 1.3G; Time: 6.5 min
GZ: 1.3G; Time: 3 min
The LZMA results are about as I expected: fantastic compression but it takes a very long time to pack the data.
The BZ2 data are a bit surprising; usually it can be about 10 or 15% smaller than GZ for hexdata from my
experience. I conclude that we should use GZ (which we are already doing, but now we confirm that it is
optimized for time versus disk space usage).
15.49 We are continuing to compress the data. Presently we are somewhere around R39_20, sequentially. I
estimated that there are 578 runs remaining, and naively say each is 2 GB (some at the end of RXX_ may be less).
Compression at 3 minutes each then takes 29 hours, so it should be finished by tomorrow evening, say around
20:00 or a little later, depending on the fluctuation.
===Full details of the test===
npg@aidas1 ~/benchmarks % ls -altr
total 2048024
-rw-r--r--. 1 npg npgstaff 2097152000 Dec 2 13:58 R45_17
drwxrwxr-x. 55 npg users 4096 Dec 2 14:01 ..
drwxr-xr-x. 2 npg npgstaff 4096 Dec 2 14:01 .
First test with lzma
npg@aidas1 ~/benchmarks % time tar cvf R45_17.lzma --lzma R45_17
R45_17
tar cvf R45_17.lzma --lzma R45_17 1388.10s user 15.63s system 100% cpu 23:13.94 total
npg@aidas1 ~/benchmarks % ls -altrh
total 2.8G
-rw-r--r--. 1 npg npgstaff 2.0G Dec 2 13:58 R45_17
drwxrwxr-x. 55 npg users 4.0K Dec 2 14:08 ..
-rw-r--r--. 1 npg npgstaff 862M Dec 2 14:31 R45_17.lzma
npg@aidas1 ~/benchmarks %
as expected, the compression quality is very good (> 50%) but this is much to slow to be practical.
next we can attempt bz2
npg@aidas1 ~/benchmarks % time tar cvjf R45_17.tar.bz2 R45_17
R45_17
tar cvjf R45_17.tar.bz2 R45_17 375.22s user 6.68s system 97% cpu 6:31.74 total
npg@aidas1 ~/benchmarks % ls -altrh
total 4.1G
-rw-r--r--. 1 npg npgstaff 2.0G Dec 2 13:58 R45_17
-rw-r--r--. 1 npg npgstaff 862M Dec 2 14:31 R45_17.lzma
-rw-r--r--. 1 npg npgstaff 737 Dec 2 14:31 results.txt
drwxrwxr-x. 55 npg users 4.0K Dec 2 14:32 ..
-rw-------. 1 npg npgstaff 12K Dec 2 14:33 .results.txt.swp
drwxr-xr-x. 2 npg npgstaff 4.0K Dec 2 14:34 .
-rw-r--r--. 1 npg npgstaff 1.3G Dec 2 14:40 R45_17.tar.bz2
npg@aidas1 ~/benchmarks % ls -altrh
total 4.1G
-rw-r--r--. 1 npg npgstaff 2.0G Dec 2 13:58 R45_17
-rw-r--r--. 1 npg npgstaff 862M Dec 2 14:31 R45_17.lzma
-rw-r--r--. 1 npg npgstaff 737 Dec 2 14:31 results.txt
drwxrwxr-x. 55 npg users 4.0K Dec 2 14:32 ..
-rw-------. 1 npg npgstaff 12K Dec 2 14:33 .results.txt.swp
drwxr-xr-x. 2 npg npgstaff 4.0K Dec 2 14:34 .
-rw-r--r--. 1 npg npgstaff 1.3G Dec 2 14:40 R45_17.tar.bz2
npg@aidas1 ~/benchmarks % time tar cvzf R45_17.tar.gz R45_17
R45_17
tar cvzf R45_17.tar.gz R45_17 188.01s user 6.53s system 100% cpu 3:13.98 total
npg@aidas1 ~/benchmarks % time tar cvzf R45_17.tar.gz R45_17
R45_17
tar cvzf R45_17.tar.gz R45_17 188.01s user 6.53s system 100% cpu 3:13.98 total
npg@aidas1 ~/benchmarks % ls -altrh
total 5.4G
-rw-r--r--. 1 npg npgstaff 2.0G Dec 2 13:58 R45_17
-rw-r--r--. 1 npg npgstaff 862M Dec 2 14:31 R45_17.lzma
-rw-r--r--. 1 npg npgstaff 737 Dec 2 14:31 results.txt
drwxrwxr-x. 55 npg users 4.0K Dec 2 14:32 ..
-rw-r--r--. 1 npg npgstaff 1.3G Dec 2 14:40 R45_17.tar.bz2
drwxr-xr-x. 2 npg npgstaff 4.0K Dec 2 14:44 .
-rw-r--r--. 1 npg npgstaff 1.3G Dec 2 14:47 R45_17.tar.gz
-rw-------. 1 npg npgstaff 12K Dec 2 14:50 .results.txt.swp
conclusion is gzip is the best as for time efficiency. |
|
864
|
Thu Feb 23 16:15:31 2023 |
TD PJCS | Bench test of AIDA FEE64 mezzanines |
Attachments 2 & 7 AIDA FEE64 mezzanine with
1) adaptor PCB connected to ERNI input connector
2) test PCB to provide power & control to FEE64 mezzanine
plus probe points for (per ASIC) Data Ready, A0-A3, MUX output, 16x fast comparator, 16x buffered preamp output etc.
Attachments 1, 3 & 4 AIDA FEE64 power (middle & right) and fan power (left)
N.B.
Attachment 1 - mid-upper TTi QL355T FEE64 PSU shows nominal current load ( 5V/1.672A 7V/0.031A ) for configured ASICs
Attachment 5 - AIDA FEE64 mezzanines in T9 AIDA cupboard
left - 2x boxes with U/S FEE64 mezzanines (labelled)
right - 2x boxes with bench test OK FEE64 mezzanines
bottom - untested FEE64 mezzanines
Attachment 6 - AIDA FEE64 mezzanines to be re-tested
Summary of AIDA FEE64 mezzanine bench tests (see Mezzanine logbooks for details)
Garner Osborn Batch 7226-1
9 pass
11 pass
15 fail no signals?
16 fail power?
17 fail power?
19 pass
23 pass
24 fail asic#4
27 fail power?
30 fail power?
37 pass
39 pass
40 fail power?
Batch 0213110101
26 fail asic#2
27 fail asic#3
29 pass
Batch 0216240101
8 pass
It is possible that the mezzanines have dirty electrical contacts - they should be cleaned and re-tested |
|
10
|
Thu Sep 25 11:53:34 2014 |
Patrick Coleman-Smith | Backup a step to check ASICs | Disconnected the adaptors with the detector.
Added the adaptors with the kapton cables only attached.
Connected the pulser outputs ( pos and neg ).
nnaida11,13 & 14 : Stat spectra are normal. Rates are 10k to 16k
nnaida12 has normal stat spectrum with ASIC3 only showing channel 5.
Power cycle and re-try.
No different.
Suggest change the Mezzanine on nnaida12 and ask for the ASIC to be replaced..... maybe visible signs of problem ? |
|
887
|
Sat Aug 19 14:52:42 2023 |
TD | BNC PB-4 & BNC PB-5 pulser test - JCMB 18.8.23 | BNC PB-4 - see attachment 1
Amplitude 35,000
Attenuators all OUT
Risetime 50ns
Decay time 1ms
Tail pulse
Polarity +
Frequency 2Hz (min)
Delay min
DSO ch#1 DC/1M - y: 5mV/div x: 100ns, 200ns, 1us, 2us & 10us/div - attachments 2-6
BNC PB-5 - see attachment 7-9
Amplitude 1.0V
Attenuation x1
Decay time 1ms
Tail pulse
Polarity +
Frequency 2Hz (min)
Delay 250ns (min)
DSO ch#1 DC/1M - y: 5mV/div x: 100ns, 200ns, 1us, 2us & 10us/div - attachments 10-14
BNC PB-5 - see attachment 15-16
Amplitude 10.0V
Attenuation x10
Decay time 1ms
Tail pulse
Polarity +
Frequency 2Hz (min)
Delay 250ns (min)
DSO ch#1 DC/1M - y: 5mV/div x: 100ns, 200ns, 1us, 2us & 10us/div - attachments 17-21
Conclusion
BNC PB-5 significantly noisier than BNC PB-4. Results consistent with GSI tests https://elog.ph.ed.ac.uk/AIDA/886 , i.e. AIDA BNC PB-5 pulser at GSI *not* faulty.
BNC PB-5 operation with 10.0V/10x ( cf. 1.0V/x1 ) shows lower level of noise but still worse than BNC PB-4.
5mV transient at test input ( C_t = 0.7pF ) = 3.5fC = 80keV Si equivalent ( check 1V x 0.7pF = 0.7pC = 16MeV OK ). |
|
860
|
Fri Jun 21 09:57:15 2019 |
CG | B2F network cables | AIDA network cables in B2F disconnected, looped and cable tied to hand rail, out of the way.
Labelled AIDA1/AIDA2 according to which network switch they belong to. |
|
478
|
Sat Nov 26 20:26:06 2016 |
Liu, AE | Analysis of implantation profile in AIDA | Here we show the PID plot and implantation depth in AIDA from BigRIPS file 40Mg1012 (1 hr of data from 20:30 in Nov 26th), merged with AIDA files R10_8 to R10_29
The more neutron-rich isotopes have a shorter range in AIDA, and seem to be implanted towards the first layers of the stack. For 40Mg - most exciting case(?) - there is only one count at DSSD1. But comparing to the position of 38Mg, we could deduce that the implantation depth is already good. need more data analyzed to decide if we need to remove a bit of degrader.
Degrader settings: 3mm Pb (at BRIKEN PE shielding), variable of 1mm W (+1mmAl) + 0.3mmW (+1 mm Al)
Attachment 1: DSSD of detected implant for cuts in the PID.
Attachment 2: PID from F8 to F11.
BigRIPS trees produced with macro at gamma16@a04:exp/users/alfredo/macro/MakePIDTree.C (or MakeAllTree.C, depending on version of merger)
Merging code in: ur16@ribfana03:analysis/users/liujj/BRIKEN_161125Parasitic/
|
|
457
|
Wed Nov 16 06:47:02 2016 |
TD | Analysis of data files R25_11 to _13 | Offline analysis of R25_11 to _13 see http://ribf-exp.riken.jp/elog/RIBF123/141
"F5 C target F7 no F11 C 6mm
Date 2016/11/10
Start time: 08:20
DLT File: 161110_0820_767778Ni_035.dlt
RUN: 035
Aida RUN: R25_11
Comment: F11 Degraders taken out after few minutes
Degrader: no
Rates:
F11R: 450 Hz
BRIKEN: 200 Hz
Stop time: 09:18
AIDA run: R25_23
ROOT file: 161110_0918_767778Ni_035.root"
Attachments 1-3 show spectra s2130-s2135 over different ranges
s2130 DSSSD #1 time between successive HEC events (2.56us/channel)
:
:
s2135 DSSSD #6 time between successive HEC events (2.56us/channel)
Attachment 4
s2000-s2005 DSSSD #1-6 LEC m_p versus m_n
Attachment 5
s2100-s2105 DSSSD #1-6 HEC m_p versus m_n
HEC events for each DSSSD are defined as m_p_hec > 0 and m_n_hec > 0
Minimum time between HEC events = 16 channels = 40.96us
Centroid channels 0-65525 of spectrum s2130 = ch 2566.44 => 0.00657s -> 152Hz
which agrees well with the typical DSSSD #1 rate for these data files
Is there structure at channel 30 => 76.8us ? More likely it shows variations
in readout time from HEC event to HEC event. |
|
379
|
Fri Oct 7 02:43:47 2016 |
TD & CG | Analysis of Sept2016/R13_47 | Analysis of R13_47 - the data file that was being written when DAQ stalled
yesterday evening - see https://elog.ph.ed.ac.uk/AIDA/371
aidas1> ./analyser2 /TapeData/Sept2016/R13_46
*** GREAT format 3.2.0 analyser - TD - May 2014
*** ERROR: READ I/O error: 5002
blocks: 32000
ADC data format: 145759250 ( 544585.9 Hz)
Other data format: 115328750 ( 430891.4 Hz)
Sample trace data format: 0 ( 0.0 Hz)
Undefined format: 0 ( 0.0 Hz)
Other data format type: PAUSE: 74 ( 0.3 Hz)
RESUME: 74 ( 0.3 Hz)
SYNC100: 2449126 ( 9150.4 Hz)
FEE64 disc: 112871466 ( 421710.5 Hz)
MBS info: 8010 ( 29.9 Hz)
Other info: 0 ( 0.0 Hz)
ADC data range bit set: 382 ( 1.4 Hz)
Timewarps: ADC: 0 ( 0.0 Hz)
PAUSE: 0 ( 0.0 Hz)
RESUME: 0 ( 0.0 Hz)
SYNC100: 0 ( 0.0 Hz)
FEE64 disc: 0 ( 0.0 Hz)
MBS info: 0 ( 0.0 Hz)
Undefined: 0 ( 0.0 Hz)
Sample trace: 0 ( 0.0 Hz)
Timestamp elapsed time: 267.652 s
FEE module #: 1 elapsed dead time 0.000 s
FEE module #: 2 elapsed dead time 0.824 s
FEE module #: 3 elapsed dead time 0.000 s
FEE module #: 4 elapsed dead time 0.000 s
FEE module #: 5 elapsed dead time 0.275 s
FEE module #: 6 elapsed dead time 0.488 s
FEE module #: 7 elapsed dead time 0.000 s
FEE module #: 8 elapsed dead time 0.000 s
FEE module #: 9 elapsed dead time 0.017 s
FEE module #: 10 elapsed dead time 0.000 s
FEE module #: 11 elapsed dead time 0.000 s
FEE module #: 12 elapsed dead time 0.000 s
FEE module #: 13 elapsed dead time 0.000 s
FEE module #: 14 elapsed dead time 0.023 s
FEE module #: 15 elapsed dead time 0.000 s
FEE module #: 16 elapsed dead time 0.000 s
FEE module #: 17 elapsed dead time 0.012 s
FEE module #: 18 elapsed dead time 0.000 s
FEE module #: 19 elapsed dead time 0.912 s
FEE module #: 20 elapsed dead time 0.000 s
FEE module #: 21 elapsed dead time 0.000 s
FEE module #: 22 elapsed dead time 0.000 s
FEE module #: 23 elapsed dead time 0.000 s
FEE module #: 24 elapsed dead time 0.000 s
FEE module #: 25 elapsed dead time 0.000 s
FEE module #: 26 elapsed dead time 0.000 s
FEE module #: 27 elapsed dead time 0.000 s
FEE module #: 28 elapsed dead time 0.000 s
FEE module #: 29 elapsed dead time 0.000 s
FEE module #: 30 elapsed dead time 0.000 s
FEE module #: 31 elapsed dead time 0.000 s
FEE module #: 32 elapsed dead time 0.000 s
*** Program elapsed time: 17.016s ( 1880.624 blocks/s, 117.539 Mb/s)
aidas1> ./analyser2 /TapeData/Sept2016/R13_47
*** GREAT format 3.2.0 analyser - TD - May 2014
*** ERROR: READ I/O error: 5002
blocks: 11864
ADC data format: 54019518 ( 544839.2 Hz)
Other data format: 42776197 ( 431439.3 Hz)
Sample trace data format: 0 ( 0.0 Hz)
Undefined format: 0 ( 0.0 Hz)
Other data format type: PAUSE: 29 ( 0.3 Hz)
RESUME: 29 ( 0.3 Hz)
SYNC100: 907301 ( 9151.0 Hz)
FEE64 disc: 41865866 ( 422257.8 Hz)
MBS info: 2972 ( 30.0 Hz)
Other info: 0 ( 0.0 Hz)
ADC data range bit set: 135 ( 1.4 Hz)
Timewarps: ADC: 0 ( 0.0 Hz)
PAUSE: 0 ( 0.0 Hz)
RESUME: 0 ( 0.0 Hz)
SYNC100: 0 ( 0.0 Hz)
FEE64 disc: 0 ( 0.0 Hz)
MBS info: 0 ( 0.0 Hz)
Undefined: 0 ( 0.0 Hz)
Sample trace: 0 ( 0.0 Hz)
Timestamp elapsed time: 99.148 s
FEE module #: 1 elapsed dead time 0.000 s
FEE module #: 2 elapsed dead time 0.179 s
FEE module #: 3 elapsed dead time 0.000 s
FEE module #: 4 elapsed dead time 0.000 s
FEE module #: 5 elapsed dead time 0.199 s
FEE module #: 6 elapsed dead time 0.100 s
FEE module #: 7 elapsed dead time 0.000 s
FEE module #: 8 elapsed dead time 0.000 s
FEE module #: 9 elapsed dead time 0.005 s
FEE module #: 10 elapsed dead time 0.000 s
FEE module #: 11 elapsed dead time 0.000 s
FEE module #: 12 elapsed dead time 0.000 s
FEE module #: 13 elapsed dead time 0.000 s
FEE module #: 14 elapsed dead time 0.003 s
FEE module #: 15 elapsed dead time 0.000 s
FEE module #: 16 elapsed dead time 0.000 s
FEE module #: 17 elapsed dead time 0.021 s
FEE module #: 18 elapsed dead time 0.000 s
FEE module #: 19 elapsed dead time 0.311 s
FEE module #: 20 elapsed dead time 0.000 s
FEE module #: 21 elapsed dead time 0.000 s
FEE module #: 22 elapsed dead time 0.000 s
FEE module #: 23 elapsed dead time 0.000 s
FEE module #: 24 elapsed dead time 0.000 s
FEE module #: 25 elapsed dead time 0.000 s
FEE module #: 26 elapsed dead time 0.000 s
FEE module #: 27 elapsed dead time 0.000 s
FEE module #: 28 elapsed dead time 0.000 s
FEE module #: 29 elapsed dead time 0.000 s
FEE module #: 30 elapsed dead time 0.000 s
FEE module #: 31 elapsed dead time 0.000 s
FEE module #: 32 elapsed dead time 0.000 s
*** Program elapsed time: 6.238s ( 1901.806 blocks/s, 118.863 Mb/s)
Final SYNCs of R13_47
aidas1. ./analyser2 v /TapeData/Sept2016/R13_47 | grep SYNC
:
:
*** SYNC100 timestamp: block: 11864 ptr: 2151 data: 0x81401340 module: 1 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2153 data: 0x82401340 module: 2 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2155 data: 0x83401340 module: 3 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2157 data: 0x84401340 module: 4 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2159 data: 0x85401340 module: 5 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2161 data: 0x86401340 module: 6 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2163 data: 0x87401340 module: 7 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2165 data: 0x88401340 module: 8 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2167 data: 0x89401340 module: 9 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2169 data: 0x8A401340 module: 10 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2171 data: 0x8B401340 module: 11 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2173 data: 0x8C401340 module: 12 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2175 data: 0x8D401340 module: 13 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2177 data: 0x8E401340 module: 14 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2179 data: 0x8F401340 module: 15 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2181 data: 0x90401340 module: 16 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2183 data: 0x91401340 module: 17 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2185 data: 0x92401340 module: 18 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2187 data: 0x93401340 module: 19 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2189 data: 0x94401340 module: 20 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2191 data: 0x95401340 module: 21 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2193 data: 0x96401340 module: 22 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2195 data: 0x97401340 module: 23 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 2197 data: 0x98401340 module: 24 information type: 4 information
field: 0x00001340 ts: 0x000001340B4800A0
*** SYNC100 timestamp: block: 11864 ptr: 6807 data: 0x81401340 module: 1 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6809 data: 0x82401340 module: 2 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6811 data: 0x83401340 module: 3 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6813 data: 0x84401340 module: 4 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6815 data: 0x85401340 module: 5 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6817 data: 0x86401340 module: 6 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6819 data: 0x87401340 module: 7 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6821 data: 0x88401340 module: 8 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6823 data: 0x89401340 module: 9 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6825 data: 0x8A401340 module: 10 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6827 data: 0x8B401340 module: 11 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6829 data: 0x8C401340 module: 12 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6831 data: 0x8D401340 module: 13 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6833 data: 0x8E401340 module: 14 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6835 data: 0x8F401340 module: 15 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6837 data: 0x90401340 module: 16 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6839 data: 0x91401340 module: 17 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6841 data: 0x92401340 module: 18 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6843 data: 0x93401340 module: 19 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6845 data: 0x94401340 module: 20 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6847 data: 0x95401340 module: 21 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6849 data: 0x96401340 module: 22 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6851 data: 0x97401340 module: 23 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
*** SYNC100 timestamp: block: 11864 ptr: 6853 data: 0x98401340 module: 24 information type: 4 information
field: 0x00001340 ts: 0x000001340B4C00A0
Analysis of the end of file R13_47 - see attachment 1
Offline analysis of R13_3 and R13_47 shows AIDA ADC data synchronised |
|
594
|
Wed May 24 06:33:19 2017 |
TD | Analysis of RIBF123R1/R23_44, R23_91 & R25_142 |
Álvaro Tolosa Delgado reports observation of c. 1s 'oscillations' in implant-decay time spectra - see below
Hello
The worst cases (oscillations in decay-curve) are:
-->R23_91_115
--> R25_142_149
Other bad cases:
--> R23_44_70
Cheers!
Check sample of data files - see attachments 1-3 - no obvious data structure issues but higher deadtime for
nnaida17 for R23_* files
Control check using file R25_12 - see attachment 4 |
|
607
|
Sun May 28 10:25:11 2017 |
TD | Analysis of RIBF123R1/R23 | |
|
605
|
Sun May 28 09:20:29 2017 |
TD | Analysis of RIBF123R1/R21 | |
|
730
|
Thu Jun 28 05:22:31 2018 |
OH | Analysis of R7 -> R9 | R7_0 -> R7_1 High Energy pulser run
R8_0 -> R8_1 Low energy puler run
R9_52 -> R9_62 Alpha run
On analysing all three runs it appears an ASIC is missing in FEE 29 - attachments 1 - 3
This ASIC does not appear to be missing in the alpha run carried out on June 24th - attachment 4
I do not believe that this is a broken ASIC.
I have performed an ASIC check load on the FEE module to try and regain it. I will check the files created since
later to see if it has been regained.
Using the pulser runs two different sets of offsets were calculated. One using the low energy run and one using
the high energy.
To compare the two different sets of offsets calculated Ex vs Ey plots were created for the first detector.
Attachment 5 shows these plots on the left is the low energy offsets and on the right the high energy pulser offsets
It can be seen that the grouping is much better with the events being tighter to the y = x line on the run sorted
using the low energy pulser offsets. |
|
180
|
Thu Mar 17 10:46:30 2016 |
TD | Analysis of R45 | See https://elog.ph.ed.ac.uk/AIDA/179
207Bi source, no pulser
Shaping time 8us
Slow comparator 0xa
Fast comparator 0xa
Re-order ASIC <-> MSL type BB18 adaptor PCB J1 connector mapping - see below
C----67---------------------------------------------------------------72------80
FUNCTION bb18order( channel )
INTEGER array( 0:63 ), bb18order, channel
C ASIC # 0 channel # 0 = array(0)
C ASIC # 1 channel # 0 = array(16)
C ASIC # 2 channel # 0 = array(32)
C ASIC # 3 channel # 0 = array(48)
C Array contents correspond to the MSL type BB18 adaptor J1 connector
C strip sequence # 0-63
DATA array /
+ 62, 63, 59, 60, 61, 56, 57, 58, 52, 53, 54, 55, 49, 50, 51, 45,
+ 46, 47, 48, 42, 43, 44, 38, 39, 40, 41, 35, 36, 37, 31, 32, 33,
+ 34, 28, 29, 30, 24, 25, 26, 27, 21, 22, 23, 17, 18, 19, 20, 14,
+ 15, 16, 10, 11, 12, 7, 3, 0, 8, 4, 1, 9, 5, 2, 13, 6 /
bb18order = array( channel )
RETURN
C----67---------------------------------------------------------------72------80
END
C----67---------------------------------------------------------------72------80
Which can be used, for example, as follows:
channel = bb18order( channel )
ch = channel + ( module - 1 ) * 64 + ( range * 2048 )
where channel (ASIC channels # 0-63), module (FEE #) and range (0=LEC/MEC, 1=HEC)
are supplied by the GREAT format data item.
Attachments 1-7 - 2D hit pattern showing which (if any) other channels j are active
( hit(j) = .true. ) in an event (< 410 clock cycles) in addition to channel i
DO i = 640, 767
IF ( hit( i ) ) THEN
DO j = i, 767
IF ( hit( j ) ) THEN
CALL inc2d( 4014, i - 640, j - 640 )
ENDIF
ENDDO
ENDIF
ENDDO
DO i = 768, 895
IF ( hit( i ) ) THEN
DO j = i, 895
IF ( hit( j ) ) THEN
CALL inc2d( 4014, i - 640, j - 640 )
ENDIF
ENDDO
ENDIF
ENDDO
Attachments 1-7 should be compared with the same spectrum shown in https://elog.ph.ed.ac.uk/AIDA/177 |
|
330
|
Mon Jul 25 08:38:56 2016 |
TD | Analysis of R4 | |
|
177
|
Fri Mar 11 15:31:53 2016 |
TD | Analysis of R34_0 | lancre> ./analyser R34_0
*** GREAT format 3.2.0 analyser - TD - May 2014
*** ERROR: READ I/O error: 5002
blocks: 32000
ADC data format: 256723694 ( 22317.5 Hz)
Other data format: 4388146 ( 381.5 Hz)
Sample trace data format: 0 ( 0.0 Hz)
Undefined format: 0 ( 0.0 Hz)
Other data format type: PAUSE: 2 ( 0.0 Hz)
RESUME: 2 ( 0.0 Hz)
SYNC100: 4388142 ( 381.5 Hz)
FEE64 disc: 0 ( 0.0 Hz)
MBS info: 0 ( 0.0 Hz)
Other info: 0 ( 0.0 Hz)
ADC data range bit set: 0 ( 0.0 Hz)
Timewarps: ADC: 0 ( 0.0 Hz)
PAUSE: 0 ( 0.0 Hz)
RESUME: 0 ( 0.0 Hz)
SYNC100: 0 ( 0.0 Hz)
FEE64 disc: 0 ( 0.0 Hz)
MBS info: 0 ( 0.0 Hz)
Undefined: 0 ( 0.0 Hz)
Sample trace: 0 ( 0.0 Hz)
Timestamp elapsed time: 11503.249 s
*** Program elapsed time: 18.582s ( 1722.094 blocks/s, 107.631 Mb/s)
Attachment 1 - expanded view of 2D hit spectrum (#4014) identifying which channels appear
in coincidence (0-410 100MHz clock ticks inclusive) with each channel (FORTRAN code fragment
shown below)
Attachment 2 - output of sort program for events in fee module #1 channels #26 and #32
- timestamps identified are then used to present raw analyser data within +/- 8 data items
of this timestamp
DO i = 640, 767
IF ( hit( i ) ) THEN
DO j = i, 767
IF ( hit( j ) ) THEN
CALL inc2d( 4014, i - 640, j - 640 )
IF ( i-640.EQ.26 .AND. j-640.EQ.32 ) THEN
WRITE( 6, 9010 )
DO k = 0, 2047
IF ( hit( k ) ) THEN
module = INT( k/64 ) + 1
channel = k - ( (module-1) * 64 )
WRITE( 6, 9020 ) k, module, channel, data(k), tsa(k)
ENDIF
ENDDO
ENDIF
ENDIF
ENDDO
ENDIF
ENDDO
DO i = 768, 895
IF ( hit( i ) ) THEN
DO j = i, 895
IF ( hit( j ) ) THEN
CALL inc2d( 4014, i - 640, j - 640 )
ENDIF
ENDDO
ENDIF
ENDDO
Attachments 3-5 higher statistics 2D hit pattern |
|
749
|
Wed Oct 3 10:47:06 2018 |
OH | Analysis of R2_0 -> R2_37 Alpha Run | Data was analysed using offsets calculated based on pulser walkthroughs carried out in June 2018
Offsets appear to still be good. Ex V Ey plots - attachment 1
Hit pattern across the FEEs looks good - attachment 2
x axis is (FEE-1)*64 + Channel
No obvious dead areas in x vs y plots either - attachment 3 |
|
463
|
Tue Nov 22 12:24:48 2016 |
TD | Analysis of R25_11 to R25_23 | Offline analysis of AIDA data files R25_11 to R25_23 using MIDASsort
Note
- no calibration (raw ADC data only)
- no thresholds
- no clustering
- events delimited by > 2us time difference between successive ADC data words
AIDA data files R25_11 to R25_23 inclusive contain 410.3M events
- HEC = high energy channel = 20GeV FSR range for high energy implants
- LEC = low energy channel = 20MeV FSR range for decays (and pulser)
- see attachment 20 *prelimnary* analysis of R25_11 to R25_23 by Tain et al. of 21.11.16
Attachments 1 & 2
-----------------
s1-s24 per FEE64 # ADC data per 20.48us
s101-s124 per FEE64 # disc hits per 20.48us
Pulser event demonstrates that all FEE64s timestamps are synchronised
Attachments 3 & 4
-----------------
s301-s306 per DSSSD LEC rate (Hz) updated every 1s
s307-3312 per DSSSD HEC rate (Hz) updated every 1s
Demonstrates implant and decay rates were reasonably constant.
Note that there is an integerisation issue in the rate calculation which
means rate is shown as zero periodically.
Attachment 5-8
--------------
s2000-s2005 per DSSSD LEC m_lec_p versus m_lec_n
following spectra require 0 < m_lec_p < 8 and 0 < m_lec_n < 8
all combinations of x & y plotted
s2010-s2015 per DSSSD LEC x versus y
s2020-s2025 per DSSSD LEC E_p versus E_n (10keV/ch nominal)
s2030-s2035 per DSSSD LEC-LEC time (2.56us/channel)
Demonstrates large LEC multiplicities associated with HEC events but relatively
low multiplicities associated with LEC-only events .
Minimum LEC-LEC time difference c. 1 x 2.56us = 2.56us which suggests events
with low LEC-LEC time difference are non-stochastic and suggests EMI/RFI noise
causing 'multiple' event bursts. This will likely be dominated by channels
0-1 (say) and 60-63 (say) of each FEE64 - disabling these channels may a quick
and dirty way to inspect a subset of data with significantly less EMI/RFI noise
Time difference between successive LEC events
DSSSD centroid =>rate (kHz)
1 21.16 18.5
2 17.45 22.4
3 40.27 9.70
4 50.86 7.68
5 58.11 6.72
6 29.33 13.3
Which somewhat over-estimates observed rates (see below)
Periodic fine structure observed with period ~4-16 channel (~10-40us)
Attachment 9-13
---------------
s2000-s2005 per DSSSD LEC m_hec_p versus m_hec_n
following spectra require 0 < m_hec_p < 8 and 0 < m_hec_n < 8
all combinations of x & y plotted
s2010-s2015 per DSSSD HEC x versus y (semi-log and linear z normalisation)
s2020-s2025 per DSSSD HEC E_p versus E_n (10MeV/channel nominal)
s2030-s2035 per DSSSD HEC-HEC time (2.56us/channel)
Demonstrates relatively low multiplicities associated with HEC events
HEC x versus y spectra are different to those shown by Tain et al. (p.4)
=> BigRIPS PID gate used?
what is the origin of the fine structure observed by Tain et al. (p.4)?
No obvious structure in the time between successive HEC events
- see also https://elog.ph.ed.ac.uk/AIDA/457
- minimum time between successive HEC events c. 16 x 2.56us = 41us which is
consistent with HEC (+LEC) multiplicity per ASIC and ASIC shaping time (8us)
Note Tain et al. (p.3) plot time between successive events with no restriction on type
(LEC or HEC). The time structure(s) observed may therefore be related to LEC events
Time difference between successive HEC events
DSSSD centroid =>rate (Hz)
1 2566.44 152.0
2 2970.33 131.5
3 2557.81 152.7
4 2622.38 149.0
5 3656.82 106.8
6 15706.73 24.9
Which somewhat over-estimates observed rates (see below)
Attachment 14-16
----------------
s2200-s2205 per pixel, per DSSSD HEC-LEC time (2.56us/channel)
Minimum HEC-LEC time difference c. 15 x 2.56us = 38.4us which is consistent
with ASIC shaping and readout times.
In comparison to Tain et al. (p.9) no obvious structures at large
HEC-LEC time differences. Significant number of excess events observed
at HEC-LEC time differences ~ few hundred us. This is likely due to
the 100kHz EMI/RFI noise observed.
Attachments 17-19
-----------------
MIDASsort Fortran source, spectrum titles, and namelist I/O variables (in this
case principally FEE64 mapping and default ADC gain/offset values).
S O R T C O M P L E T E ..... Tue Nov 22 20:20:10 2016
*** ENTRY finish
*** data items: -900823296 ( -37356.59 Hz)
*** ADC events: 410276049 ( 17013.89 Hz)
*** time warps: 0 ( 0.00 Hz)
*** DSSSD # 1 count: 56031017 old count: 56019099 dt: 3505.73 s LEC rate: 15982.71 Hz
*** DSSSD # 2 count: 49362481 old count: 49350664 dt: 3505.73 s LEC rate: 14080.52 Hz
*** DSSSD # 3 count: 33599202 old count: 33591614 dt: 3505.73 s LEC rate: 9584.09 Hz
*** DSSSD # 4 count: 26666285 old count: 26660843 dt: 3505.73 s LEC rate: 7606.49 Hz
*** DSSSD # 5 count: 23365594 old count: 23360881 dt: 3505.73 s LEC rate: 6664.98 Hz
*** DSSSD # 6 count: 42705054 old count: 42696091 dt: 3505.73 s LEC rate: 12181.51 Hz
*** DSSSD # 1 count: 469505 old count: 469407 dt: 3505.73 s HEC rate: 133.93 Hz
*** DSSSD # 2 count: 404352 old count: 404269 dt: 3505.73 s HEC rate: 115.34 Hz
*** DSSSD # 3 count: 468569 old count: 468472 dt: 3505.73 s HEC rate: 133.66 Hz
*** DSSSD # 4 count: 455030 old count: 454982 dt: 3505.73 s HEC rate: 129.80 Hz
*** DSSSD # 5 count: 326872 old count: 326863 dt: 3505.73 s HEC rate: 93.24 Hz
*** DSSSD # 6 count: 65691 old count: 65690 dt: 3505.73 s HEC rate: 18.74 Hz
*** ENTRY finish ends
S O R T S T O P P E D ..... Tue Nov 22 20:21:09 2016 |
|