AIDA GELINA BRIKEN nToF CRIB ISOLDE CIRCE nTOFCapture DESPEC DTAS EDI_PSA 179Ta CARME StellarModelling DCF K40
  nToF, Page 1 of 5  ELOG logo
ID Date Author Subject
  95   Mon Jul 21 10:30:01 2025 SelinThe 2D Energy Spectrum of Ca41

The 2D energy spectrum of Ca41 (36 runs). The expected alpha energies are 4.8 MeV (alpha_0) and 2.7 MeV (alpha_1).

Attachment 1: Screenshot_from_2025-07-21_08-51-09.png
Screenshot_from_2025-07-21_08-51-09.png
  94   Fri Jul 18 12:04:36 2025 CLWPresence at CERN

Excel sheet for presence at CERN during 41Ca run. Please update if required. 

https://docs.google.com/spreadsheets/d/19OzH7bpnHb-YeOskNBGlrhEkPZmDsPDw9y0tleU0Soo/edit?gid=0#gid=0

  93   Wed Jul 16 13:56:00 2025 CLWLinks to photos and proton counting excel sheet

Photos setup

Excel Sheet 

  92   Wed Jul 16 11:45:39 2025 SelinBoron Spectra Update After Setting Change + Pulser Removed

Uncalibrated amplitude spectra of Boron (run221188) after the settings were changed, the pulser was removed, and the threshold in the UserInput has been lowered. Both alphas can be seen in the front and back strips. The ratios between the alphas are similar for front (0.066) and back (0.063) strips.

1- Uncalibrated amplitude spectra of strip 2.

2- 1- Uncalibrated amplitude spectra of strip 19.

Attachment 1: B_Strip2_ded.png
B_Strip2_ded.png
Attachment 2: B_Strip19_ded.png
B_Strip19_ded.png
  90   Wed Jul 16 08:55:22 2025 SelinRun221141 Boron Uncalibrated Data

Plots of Boron #1 run (221141) from the Ca41 campaign with the right voltage applied (11.07.2025).

1- Uncalibrated amplitude spectra of strip 1 (dedicated).

2- Uncalibrated 2d energy plot of Boron dedicated data.

3- Uncalibrated amplitude spectra of strip 22 (dedicated). The alpha-0 on the back strips has lower counts.

Attachment 1: B_Strip1.png
B_Strip1.png
Attachment 2: B_ded_2d.png
B_ded_2d.png
Attachment 3: B_Strip22.png
B_Strip22.png
  89   Wed Jul 16 08:51:06 2025 SelinRun221136 Lithium Uncalibrated Data

Plots of Lithium #3 run (221136) from the Ca41 campaign with the right voltage applied (11.07.2025).

1- Uncalibrated amplitude spectra of strip 1 (dedicated).

2- Uncalibrated amplitude spectra of strip 1 (parasitic).

3- Uncalibrated 2d energy plot of Lithium dedicated data.

Attachment 1: Li_Strip1.png
Li_Strip1.png
Attachment 2: Li_Strip1_Par.png
Li_Strip1_Par.png
Attachment 3: Li_ded_2d.png
Li_ded_2d.png
  88   Sat Jul 12 11:34:31 2025 SelinDetector-Cable Connections

List of the detectors and the connections.

Attachment 1: Detector-Cable.pdf
Detector-Cable.pdf Detector-Cable.pdf
  87   Sat Jul 12 11:25:35 2025 Selin The Detector Bias-Leakage Current Data

This Excel sheet has the detector bias-leakage current data and plot for both detectors.

Detector 2 has lower leakage current and a flatter plateau region.

Attachment 1: Ca-VoltageCurrent.xlsx
  86   Sat Jul 12 10:30:06 2025 Francisco García InfantesReport Experimental SetUp Ca41

I'm attaching a report for the experimental setup so far.

There is a main problem which haven't been solved yet and I don't know if that can cause problem in the future analysis.

Channels #23, #24, #31 and #32 are not working well. The signal os these channels look attenuated from the pulser, make impossible to see then in the Boron run.

As these channels are in the back side of the detector, it could be possible to run like? Unless we have more ideas about to solve the problem.

The front channels work well all of them, and the rest of the back channels work well as well.

I attach the current for the +15 and -15 volt applied to the PreAmp (low voltage) and the leakage current from the detector is 0.1 uA.

Attachment 1: Experimental_Setup_Ca41.pdf
Experimental_Setup_Ca41.pdf Experimental_Setup_Ca41.pdf Experimental_Setup_Ca41.pdf Experimental_Setup_Ca41.pdf Experimental_Setup_Ca41.pdf
Attachment 2: Current_Value_Voltage_-15.jpeg
Current_Value_Voltage_-15.jpeg
Attachment 3: Current_Value_Voltage_15.jpeg
Current_Value_Voltage_15.jpeg
Attachment 4: Leakage_Current_Detector.jpeg
Leakage_Current_Detector.jpeg
  85   Fri Jul 11 09:16:18 2025 TDSilena 7710 Quad Bias Supply manual and internal configuration
Manual - see attachment 1


Internal configuration

Voltage full scale - 400V/10uA

JP1/1-4 fitted
JP4 fitted *see note below
DVM card JP1 AB
HV jumpers AB

Current readout resolution - 10nA

DVM card JP2 LM
JP5/1-5 GH


Polarity - channels 1-4 negative

Note with channel 1 voltage set to -180V the output voltage measured by DMM is -40V.
The output impedance of the Silena 7710 outputs may be comparable to the input impedance of the DMM (DMM typically c. 20-40M) so the measured voltage will be a *lower* 
limit.

With JP4 removed (per manual instructions for voltage full scale 400V/10uA) the front panel reads -20V with an output voltage measured by DMM of -40V.
Again, the measured voltage will be a lower limit.

By observation of the behaviour of the electronic noise of p+n junction and n+n Ohmic strips as a function of bias for MSL type W1 DSSSD 3353-4 (75um) the voltage 
applied to the DSSSD is > depletion.
MSL QA tests report depletion voltage 28V and test/operating voltage 28+10V = 38V.
Attachment 1: Silena_7710_quad_bias_supply.pdf
Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf
  84   Mon Jun 23 09:36:32 2025 CLWExpected Spectra for Li and B in a 50 um Si detector

B looks as we are used to , Li tritons are now stopped in the detector and should appear around 2.8 MeV. 

Attachment 1: 50_um.png
50_um.png
  83   Fri Jun 20 09:49:11 2025 CLWSilicon detector setup description
Attachment 1: SiliSetupEAR2.pdf
SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf
  82   Tue Mar 18 13:28:30 2025 EmmanuelB10 and LiF data with Fast Fourier Transform

Attached is the B10 and LiF data with Fast Fourier Transform and varying time constants.

Attachment 1: B10.pdf
B10.pdf
Attachment 2: Li.pdf
Li.pdf
  81   Wed Feb 12 13:51:02 2025 CLWexpected counts B and Li

The rootfiles countsB.root and countsLi.root contain histograms of count spectra that would be expected at n_TOF for a 10B and a 6Li target, respectively. The units in y are arbitrary. This can be used to check, if we can reproduce the expected trend with our Li and B measurements. So the histograms called "counts" can be directly compared to the histograms called "energy" in Sili_deed.c (they should have the same binning). You need to scale the histogram to get a decent overlap. You can use this also to estimate the neutron energy calibration - the thermal bump at low energy will give you a good idea of the flight path length. Structure at high energy will give you a better idea on the offset.

The files 6Li_endf.root and 10B_endf.root are the original cross section files, and countrate_calc.C is the file used to produce the count spectra.

 

Attachment 1: 6Li_endf.root
Attachment 2: 10B_endf.root
Attachment 3: countsB.root
Attachment 4: evaluated_flux_EAR2_DEC2022.root
Attachment 5: countrate_calc.C
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <sstream>
#include <cmath>
#include "TRandom.h"
#include <math.h>
#include <TPolyLine.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <ctype.h>
#include "TTree.h"
#include <TROOT.h>
#include <TApplication.h>
#include <TRint.h>
#include <TSystem.h>
#include <TH1.h>
#include <TH2.h>
#include <TAxis.h>
#include <TGaxis.h>
#include <TCanvas.h>
#include <TGraph.h>
#include <TGraphErrors.h>
#include <TGraphAsymmErrors.h>
#include <TMultiGraph.h>
#include <TStyle.h>
#include <TKey.h>
#include <TLegend.h>
#include <TColor.h>
#include <TPad.h>
#include <TText.h>
#include <TPaveText.h>
#include <TBox.h>
#include <TLine.h>
#include <TMarker.h>
#include <TLatex.h>
#include <TMath.h>
#include <TF1.h>
#include <TFile.h>
#include <TClass.h>

#include "Math/Minimizer.h"
#include "Math/Factory.h"
#include "Math/Functor.h"

#include <TVirtualFitter.h>

using namespace std;

void RebinProperly(TH1F* hin, TH1F* hout);


Char_t *inputfile="6Li_endf.root";
Char_t *histo="xshighbin";
Char_t *outputfile="countsLi.root";
Char_t *output="counts";
int k=1;
 
void run()
{


  // Read the flux

    TFile *fflux = new TFile("evaluated_flux_EAR2_DEC2022.root", "read");
    TH1F *eval = (TH1F*)fflux->Get("h_flux_ear2");
    
    
//Read the cross section

    TFile *fcross=new TFile("10B_endf.root", "read");;
TH1F *hcross =(TH1F*)fcross->Get("xshighbin");
    
    
    // create counr histogram with logarithmic binning for x axis, commonly used for neutron energy histograms
    
          float Ene[20001];
          for(Int_t u=0;u<=20000;u++)
          {
              Ene[u]=pow(10,(float(u)-6000)/2000);
          }
          
          TH1F *hcounts =new TH1F("","histo",20000,Ene);
          hcounts->GetXaxis()->Set(20000,Ene);

// function to rebin the cross section histogram to the same binning as the counts histogram
    
    RebinProperly(hcross,hcounts);
    
    

    
    
  Int_t auxbin1;
  Float_t scaler1;
    
    // multiply by the n_TOF neutron flux (binning is in units of ExdPhi/dE, so independent of binning)

  for(Int_t i=1; i<=hcounts->GetNbinsX(); i++)
    {
      auxbin1 = eval->FindBin(hcounts->GetBinCenter(i));
      scaler1 = TMath::Log(hcounts->GetBinLowEdge(i+1)/hcounts->GetBinLowEdge(i));
      if(hcounts->GetBinContent(i)>0 && eval->GetBinContent(auxbin1)>0)hcounts->SetBinContent(i, hcounts->GetBinContent(i)*eval->GetBinContent(auxbin1)*scaler1);

    }
    
    
    
    
    for(int i=1;i<=hcounts->GetNbinsX();i++){
        if(hcounts->GetBinContent(i)==0)hcounts->SetBinContent(i,1);
        hcounts->SetBinError(i,0);
    }
 
    hcounts->Scale(1/7000.);
    
    

    
    hcounts->SetTitle("");
    hcounts->GetXaxis()->SetTitle("Neutron Energy (eV)");
    hcounts->GetYaxis()->SetTitle("Counts (arbitrary)");
    
TFile *fnew=new TFile(outputfile,"recreate");
    
    hcounts->Write(output);
    fnew->Close();
    
    
    
    fflux->Close();
    fcross->Close();

}







void RebinProperly(TH1F* hin, TH1F* hout){
    
    for(int i=1;i<=hout->GetNbinsX();i++)
    {
        float content=0;
        float error=0;
        float errorsquare=0;
        int zahler=0;
        float specedgelow=hout->GetBinLowEdge(i);
        float specedgehigh=hout->GetBinLowEdge(i+1);
        
        int binlow=hin->FindBin(specedgelow);
        int binup=hin->FindBin(specedgehigh);
        
        if(binlow==binup){content=hin->GetBinContent(binup);error=hin->GetBinError(binup);} // (stat) error probably under-estimated in this case
        if(binlow!=binup){
            
            content=content+hin->GetBinContent(binlow)*(hin->GetBinLowEdge(binlow+1)-specedgelow); //add first bin
            content=content+hin->GetBinContent(binup)*(-hin->GetBinLowEdge(binup)+specedgehigh); //add last bin
            //cout<<hin->GetBinLowEdge(binlow+1)-specedgelow<<" "<<-hin->GetBinLowEdge(binup)+specedgehigh<<endl;
            for(int q=binlow+1;q<binup;q++){content=content+hin->GetBinContent(q)*hin->GetBinWidth(q);} //add intermediate bins
            content=content/(specedgehigh-specedgelow);
            
            
            // error calculation
            errorsquare=errorsquare+hin->GetBinError(binlow)*(hin->GetBinLowEdge(binlow+1)-specedgelow)*hin->GetBinError(binlow)*(hin->GetBinLowEdge(binlow+1)-specedgelow);
            errorsquare=errorsquare+hin->GetBinError(binup)*(-hin->GetBinLowEdge(binup)+specedgehigh)*hin->GetBinError(binup)*(-hin->GetBinLowEdge(binup)+specedgehigh); //add last bin
            for(int q=binlow+1;q<binup;q++){errorsquare=errorsquare+hin->GetBinError(q)*hin->GetBinWidth(q)*hin->GetBinError(q)*hin->GetBinWidth(q);} //add intermediate bins
            error=sqrt(errorsquare)/(specedgehigh-specedgelow);
            
        }
        hout->SetBinContent(i,content);
        hout->SetBinError(i,error);
    }
    
    
}
Attachment 6: countsLi.root
  80   Mon Sep 16 12:36:45 2024 TD34-way IDC to 37-way D connector ribbon cables
The 2x sets of 34-way IDC to 37-way D connctor ribbon cables used at GSI for the two-alpha decay measurement have been located - see attachments 1-4.

They have been packed for shipment to CERN and delivered to stores for shipment. Awaiting quotation and P&M PO.
Attachment 1: 20240916_121057_(1).jpg
20240916_121057_(1).jpg
Attachment 2: 20240916_121052_(1).jpg
20240916_121052_(1).jpg
Attachment 3: 20240916_121047_(1).jpg
20240916_121047_(1).jpg
Attachment 4: 20240916_121003_(1).jpg
20240916_121003_(1).jpg
  79   Sat Sep 14 09:30:40 2024 TDNeutron beam profile
Neutron beam profile - film exposure overnight 12/13.9.24
Attachment 1: 20240914_101751.jpg
20240914_101751.jpg
  78   Thu Sep 12 15:26:30 2024 NickEAR2 Periodic Noise
Attachment 1: IMG_20240912_161937023_HDR.jpg
IMG_20240912_161937023_HDR.jpg
  76   Thu Sep 12 11:07:29 2024 Nick40K Borrowed Items

We borrowed from n_TOF:

1x O-ring for circular side-flanges on the chamber (the borrowed part has a small green marker cross on it)

10x LIMO-to-BNC connectors (BNC female) from electronics lab outside EAR1

  74   Tue Apr 16 12:24:01 2024 EmmanuelMWD amplitude (dE and E)
Attachment 1: 26Al_PDF.pdf
26Al_PDF.pdf 26Al_PDF.pdf 26Al_PDF.pdf 26Al_PDF.pdf 26Al_PDF.pdf 26Al_PDF.pdf 26Al_PDF.pdf 26Al_PDF.pdf
  73   Mon Mar 25 12:57:30 2024 ClwAdapters for ntof setup

10 new Adapters for lemo to bnc on my desk

Attachment 1: 20240325_125536.jpg
20240325_125536.jpg
Attachment 2: 20240325_125528.jpg
20240325_125528.jpg
ELOG V3.1.4-unknown