AIDA GELINA BRIKEN nToF CRIB ISOLDE CIRCE nTOFCapture DESPEC DTAS EDI_PSA 179Ta CARME StellarModelling DCF K40
  nToF, Page 1 of 5  ELOG logo
New entries since:Thu Jan 1 01:00:00 1970
ID Date Author Subjectdown
  44   Mon Jul 31 10:21:41 2023 Nikolay Sosninn_TOF Data and Filtering
Attachment 1: Al26_Filtering.pptx
  81   Wed Feb 12 13:51:02 2025 CLWexpected counts B and Li

The rootfiles countsB.root and countsLi.root contain histograms of count spectra that would be expected at n_TOF for a 10B and a 6Li target, respectively. The units in y are arbitrary. This can be used to check, if we can reproduce the expected trend with our Li and B measurements. So the histograms called "counts" can be directly compared to the histograms called "energy" in Sili_deed.c (they should have the same binning). You need to scale the histogram to get a decent overlap. You can use this also to estimate the neutron energy calibration - the thermal bump at low energy will give you a good idea of the flight path length. Structure at high energy will give you a better idea on the offset.

The files 6Li_endf.root and 10B_endf.root are the original cross section files, and countrate_calc.C is the file used to produce the count spectra.

 

Attachment 1: 6Li_endf.root
Attachment 2: 10B_endf.root
Attachment 3: countsB.root
Attachment 4: evaluated_flux_EAR2_DEC2022.root
Attachment 5: countrate_calc.C
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <sstream>
#include <cmath>
#include "TRandom.h"
#include <math.h>
#include <TPolyLine.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <ctype.h>
#include "TTree.h"
#include <TROOT.h>
#include <TApplication.h>
#include <TRint.h>
#include <TSystem.h>
#include <TH1.h>
#include <TH2.h>
#include <TAxis.h>
#include <TGaxis.h>
#include <TCanvas.h>
#include <TGraph.h>
#include <TGraphErrors.h>
#include <TGraphAsymmErrors.h>
#include <TMultiGraph.h>
#include <TStyle.h>
#include <TKey.h>
#include <TLegend.h>
#include <TColor.h>
#include <TPad.h>
#include <TText.h>
#include <TPaveText.h>
#include <TBox.h>
#include <TLine.h>
#include <TMarker.h>
#include <TLatex.h>
#include <TMath.h>
#include <TF1.h>
#include <TFile.h>
#include <TClass.h>

#include "Math/Minimizer.h"
#include "Math/Factory.h"
#include "Math/Functor.h"

#include <TVirtualFitter.h>

using namespace std;

void RebinProperly(TH1F* hin, TH1F* hout);


Char_t *inputfile="6Li_endf.root";
Char_t *histo="xshighbin";
Char_t *outputfile="countsLi.root";
Char_t *output="counts";
int k=1;
 
void run()
{


  // Read the flux

    TFile *fflux = new TFile("evaluated_flux_EAR2_DEC2022.root", "read");
    TH1F *eval = (TH1F*)fflux->Get("h_flux_ear2");
    
    
//Read the cross section

    TFile *fcross=new TFile("10B_endf.root", "read");;
TH1F *hcross =(TH1F*)fcross->Get("xshighbin");
    
    
    // create counr histogram with logarithmic binning for x axis, commonly used for neutron energy histograms
    
          float Ene[20001];
          for(Int_t u=0;u<=20000;u++)
          {
              Ene[u]=pow(10,(float(u)-6000)/2000);
          }
          
          TH1F *hcounts =new TH1F("","histo",20000,Ene);
          hcounts->GetXaxis()->Set(20000,Ene);

// function to rebin the cross section histogram to the same binning as the counts histogram
    
    RebinProperly(hcross,hcounts);
    
    

    
    
  Int_t auxbin1;
  Float_t scaler1;
    
    // multiply by the n_TOF neutron flux (binning is in units of ExdPhi/dE, so independent of binning)

  for(Int_t i=1; i<=hcounts->GetNbinsX(); i++)
    {
      auxbin1 = eval->FindBin(hcounts->GetBinCenter(i));
      scaler1 = TMath::Log(hcounts->GetBinLowEdge(i+1)/hcounts->GetBinLowEdge(i));
      if(hcounts->GetBinContent(i)>0 && eval->GetBinContent(auxbin1)>0)hcounts->SetBinContent(i, hcounts->GetBinContent(i)*eval->GetBinContent(auxbin1)*scaler1);

    }
    
    
    
    
    for(int i=1;i<=hcounts->GetNbinsX();i++){
        if(hcounts->GetBinContent(i)==0)hcounts->SetBinContent(i,1);
        hcounts->SetBinError(i,0);
    }
 
    hcounts->Scale(1/7000.);
    
    

    
    hcounts->SetTitle("");
    hcounts->GetXaxis()->SetTitle("Neutron Energy (eV)");
    hcounts->GetYaxis()->SetTitle("Counts (arbitrary)");
    
TFile *fnew=new TFile(outputfile,"recreate");
    
    hcounts->Write(output);
    fnew->Close();
    
    
    
    fflux->Close();
    fcross->Close();

}







void RebinProperly(TH1F* hin, TH1F* hout){
    
    for(int i=1;i<=hout->GetNbinsX();i++)
    {
        float content=0;
        float error=0;
        float errorsquare=0;
        int zahler=0;
        float specedgelow=hout->GetBinLowEdge(i);
        float specedgehigh=hout->GetBinLowEdge(i+1);
        
        int binlow=hin->FindBin(specedgelow);
        int binup=hin->FindBin(specedgehigh);
        
        if(binlow==binup){content=hin->GetBinContent(binup);error=hin->GetBinError(binup);} // (stat) error probably under-estimated in this case
        if(binlow!=binup){
            
            content=content+hin->GetBinContent(binlow)*(hin->GetBinLowEdge(binlow+1)-specedgelow); //add first bin
            content=content+hin->GetBinContent(binup)*(-hin->GetBinLowEdge(binup)+specedgehigh); //add last bin
            //cout<<hin->GetBinLowEdge(binlow+1)-specedgelow<<" "<<-hin->GetBinLowEdge(binup)+specedgehigh<<endl;
            for(int q=binlow+1;q<binup;q++){content=content+hin->GetBinContent(q)*hin->GetBinWidth(q);} //add intermediate bins
            content=content/(specedgehigh-specedgelow);
            
            
            // error calculation
            errorsquare=errorsquare+hin->GetBinError(binlow)*(hin->GetBinLowEdge(binlow+1)-specedgelow)*hin->GetBinError(binlow)*(hin->GetBinLowEdge(binlow+1)-specedgelow);
            errorsquare=errorsquare+hin->GetBinError(binup)*(-hin->GetBinLowEdge(binup)+specedgehigh)*hin->GetBinError(binup)*(-hin->GetBinLowEdge(binup)+specedgehigh); //add last bin
            for(int q=binlow+1;q<binup;q++){errorsquare=errorsquare+hin->GetBinError(q)*hin->GetBinWidth(q)*hin->GetBinError(q)*hin->GetBinWidth(q);} //add intermediate bins
            error=sqrt(errorsquare)/(specedgehigh-specedgelow);
            
        }
        hout->SetBinContent(i,content);
        hout->SetBinError(i,error);
    }
    
    
}
Attachment 6: countsLi.root
  95   Mon Jul 21 10:30:01 2025 SelinThe 2D Energy Spectrum of Ca41

The 2D energy spectrum of Ca41 (36 runs). The expected alpha energies are 4.8 MeV (alpha_0) and 2.7 MeV (alpha_1).

Attachment 1: Screenshot_from_2025-07-21_08-51-09.png
Screenshot_from_2025-07-21_08-51-09.png
  30   Thu Oct 6 09:34:30 2022 ClaudiaTest setup Photos and cabling

Setup 5.10.22

dE 20 um (ID 2837-33) and 494 um double sided (ID 1194-9)

46 channels (2 connectors missing)

LiF4 in beam 

dE: Big flat cables from preamp 22 and 23 into 1A and 1B

E: from preamp 24+25 go into 2A, 2B and 3A 3B

LEMO converter box: Cable 1: dE

                                   Cable 3: E n+n

                                  unlabeled cable: E p+n

E detector voltage: -133 V, leakage current -0.53 micro-Amp

dE detector voltage -22 V, leakage current -0.03 micro-Amp

For the E detector one of the edge p+n strip bond-wires is suspected broken.

Attachment 1: 20221005_174742.jpg
20221005_174742.jpg
Attachment 2: 20221005_174759.jpg
20221005_174759.jpg
Attachment 3: 20221005_184752.jpg
20221005_184752.jpg
Attachment 4: 20221005_184801.jpg
20221005_184801.jpg
Attachment 5: 20221005_174742.jpg
20221005_174742.jpg
  51   Thu Aug 10 11:30:32 2023 Nikolay SosninSilicons and LiF3+Gafchromic Target
Attachment 1: EDET_150um_Box.JPG
EDET_150um_Box.JPG
Attachment 2: EDET_150um.JPG
EDET_150um.JPG
Attachment 3: EDET_ID.JPG
EDET_ID.JPG
Attachment 4: DEED_20um_Box.JPG
DEED_20um_Box.JPG
Attachment 5: LiF3_Gafchrmoic_Target_Mounted.JPG
LiF3_Gafchrmoic_Target_Mounted.JPG
Attachment 6: LiF3_Gafchromic_Side.JPG
LiF3_Gafchromic_Side.JPG
Attachment 7: LiF3_Gafchromic_Front.JPG
LiF3_Gafchromic_Front.JPG
Attachment 8: Detector_Mount_and_LiF3.JPG
Detector_Mount_and_LiF3.JPG
Attachment 9: Detectors_Mounting.JPG
Detectors_Mounting.JPG
Attachment 10: Detectors_Mounted_DEED.JPG
Detectors_Mounted_DEED.JPG
Attachment 11: Detectors_Mounted_EDET.JPG
Detectors_Mounted_EDET.JPG
Attachment 12: Detectors_and_LiF3_Gafchrmoic_TestPosition.JPG
Detectors_and_LiF3_Gafchrmoic_TestPosition.JPG
Attachment 13: Detectors_and_LiF3_Gafchrmoic_TestPosition_Back.JPG
Detectors_and_LiF3_Gafchrmoic_TestPosition_Back.JPG
Attachment 14: Detectors_and_LiF3_Gafchrmoic_TestPosition_Below.JPG
Detectors_and_LiF3_Gafchrmoic_TestPosition_Below.JPG
Attachment 15: Detectors_and_LiF3_Gafchrmoic_TestPosition_Above.JPG
Detectors_and_LiF3_Gafchrmoic_TestPosition_Above.JPG
Attachment 16: Detectors_and_LiF3_Gafchrmoic_TestPosition_Tilt.JPG
Detectors_and_LiF3_Gafchrmoic_TestPosition_Tilt.JPG
Attachment 17: Detectors_and_LiF3_Gafchrmoic_TestPosition_Front.JPG
Detectors_and_LiF3_Gafchrmoic_TestPosition_Front.JPG
Attachment 18: Assembly_Insert.JPG
Assembly_Insert.JPG
  83   Fri Jun 20 09:49:11 2025 CLWSilicon detector setup description
Attachment 1: SiliSetupEAR2.pdf
SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf SiliSetupEAR2.pdf
  36   Sat Oct 8 11:56:49 2022 Nikolay SosninSilicon Strips of Concern

DEED 6 and 9 no signal throughout the campaign.

EFED 27 high oscillations in baseline throughout the campaign.

  85   Fri Jul 11 09:16:18 2025 TDSilena 7710 Quad Bias Supply manual and internal configuration
Manual - see attachment 1


Internal configuration

Voltage full scale - 400V/10uA

JP1/1-4 fitted
JP4 fitted *see note below
DVM card JP1 AB
HV jumpers AB

Current readout resolution - 10nA

DVM card JP2 LM
JP5/1-5 GH


Polarity - channels 1-4 negative

Note with channel 1 voltage set to -180V the output voltage measured by DMM is -40V.
The output impedance of the Silena 7710 outputs may be comparable to the input impedance of the DMM (DMM typically c. 20-40M) so the measured voltage will be a *lower* 
limit.

With JP4 removed (per manual instructions for voltage full scale 400V/10uA) the front panel reads -20V with an output voltage measured by DMM of -40V.
Again, the measured voltage will be a lower limit.

By observation of the behaviour of the electronic noise of p+n junction and n+n Ohmic strips as a function of bias for MSL type W1 DSSSD 3353-4 (75um) the voltage 
applied to the DSSSD is > depletion.
MSL QA tests report depletion voltage 28V and test/operating voltage 28+10V = 38V.
Attachment 1: Silena_7710_quad_bias_supply.pdf
Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf Silena_7710_quad_bias_supply.pdf
  58   Fri Aug 11 13:06:54 2023 AnnieSignal Spreadsheet info

Spreadhseet made for shifters to manually enter that they have checked each signal and that they can see gamma-flashes. It is saved as "26Al_EAR2_Signal_Checks.ods", it is located on the second monitor on the right of the control room, next to the monitor used to see the beam intensity (same monitor used to see signals).

It will stay open throughout the campeign. Shifters have been told to check signals more than just the once to record that they're okay, and there is a comments box for shifters to add any comments/issues that arises after they have recorde that they have checked the signals at least once.

Attachment 1: IMG_2920.JPG
IMG_2920.JPG
Attachment 2: IMG_2921.JPG
IMG_2921.JPG
Attachment 3: IMG_2922.JPG
IMG_2922.JPG
  26   Fri Sep 2 12:03:40 2016 SarahSPD card changed

14 bit card replaced for DEED 9-12, to prevent issue with pulser arriving before gamma flash.

  90   Wed Jul 16 08:55:22 2025 SelinRun221141 Boron Uncalibrated Data

Plots of Boron #1 run (221141) from the Ca41 campaign with the right voltage applied (11.07.2025).

1- Uncalibrated amplitude spectra of strip 1 (dedicated).

2- Uncalibrated 2d energy plot of Boron dedicated data.

3- Uncalibrated amplitude spectra of strip 22 (dedicated). The alpha-0 on the back strips has lower counts.

Attachment 1: B_Strip1.png
B_Strip1.png
Attachment 2: B_ded_2d.png
B_ded_2d.png
Attachment 3: B_Strip22.png
B_Strip22.png
  89   Wed Jul 16 08:51:06 2025 SelinRun221136 Lithium Uncalibrated Data

Plots of Lithium #3 run (221136) from the Ca41 campaign with the right voltage applied (11.07.2025).

1- Uncalibrated amplitude spectra of strip 1 (dedicated).

2- Uncalibrated amplitude spectra of strip 1 (parasitic).

3- Uncalibrated 2d energy plot of Lithium dedicated data.

Attachment 1: Li_Strip1.png
Li_Strip1.png
Attachment 2: Li_Strip1_Par.png
Li_Strip1_Par.png
Attachment 3: Li_ded_2d.png
Li_ded_2d.png
  86   Sat Jul 12 10:30:06 2025 Francisco García InfantesReport Experimental SetUp Ca41

I'm attaching a report for the experimental setup so far.

There is a main problem which haven't been solved yet and I don't know if that can cause problem in the future analysis.

Channels #23, #24, #31 and #32 are not working well. The signal os these channels look attenuated from the pulser, make impossible to see then in the Boron run.

As these channels are in the back side of the detector, it could be possible to run like? Unless we have more ideas about to solve the problem.

The front channels work well all of them, and the rest of the back channels work well as well.

I attach the current for the +15 and -15 volt applied to the PreAmp (low voltage) and the leakage current from the detector is 0.1 uA.

Attachment 1: Experimental_Setup_Ca41.pdf
Experimental_Setup_Ca41.pdf Experimental_Setup_Ca41.pdf Experimental_Setup_Ca41.pdf Experimental_Setup_Ca41.pdf Experimental_Setup_Ca41.pdf
Attachment 2: Current_Value_Voltage_-15.jpeg
Current_Value_Voltage_-15.jpeg
Attachment 3: Current_Value_Voltage_15.jpeg
Current_Value_Voltage_15.jpeg
Attachment 4: Leakage_Current_Detector.jpeg
Leakage_Current_Detector.jpeg
  62   Mon Aug 14 11:00:13 2023 TDRAL108 +/-15V PSU test in ISOLDE hall
This morning 2x RAL108 +/-15V PSUs were borrowed from the Edinburgh equipment in the ISOLDE hall to check whether the same transient noise is observed at the +/-15V PSU 
outputs - this was confirmed. See https://elog.ph.ed.ac.uk/nToF/63

Following this test the same 2x RAL108 +/-15V PSUs were tested in the ISOLDE hall ( 19" rack adjacent to the HIE-ISOLDE GP scattering chamber ). 


PSU #1 Coutant HSC15-3.0

Setup and PSU details - attachments 1-4

DSO ch#1 +15V AC/1M, ch#2 -15V AC/1M - y: 5mV/div x: 400ns, 4us & 40us/div - attachments 5-7


PSU #2 Farnell MX2

Setup and PSU details - attachments 8-10

DSO ch#1 +15V AC/1M, ch#2 -15V AC/1M - y: 5mV/div x: 400ns, 4us & 40us/div - attachments 11-13


Conclusion 

The noise of the 2x RAL108 +/-15V PSUs differed somewhat ( frequency and structure of HF transients ) from each other in the ISOLDE test.

Compared to the EAR2, n_TOF test the amplitudes were c. 10x smaller and the HF transient frequency and structure differed.

This appears to confirm that the primary problem is the ac mains power in EAR2, n_TOF - input and/or output filtering is required.
Attachment 1: 20230814_110402.jpg
20230814_110402.jpg
Attachment 2: 20230814_111029.jpg
20230814_111029.jpg
Attachment 3: 20230814_111128.jpg
20230814_111128.jpg
Attachment 4: 20230814_111216.jpg
20230814_111216.jpg
Attachment 5: 20230814_110410.jpg
20230814_110410.jpg
Attachment 6: 20230814_110424.jpg
20230814_110424.jpg
Attachment 7: 20230814_110516.jpg
20230814_110516.jpg
Attachment 8: 20230814_110053.jpg
20230814_110053.jpg
Attachment 9: 20230814_110723.jpg
20230814_110723.jpg
Attachment 10: 20230814_110738.jpg
20230814_110738.jpg
Attachment 11: 20230814_110158.jpg
20230814_110158.jpg
Attachment 12: 20230814_110142.jpg
20230814_110142.jpg
Attachment 13: 20230814_110105.jpg
20230814_110105.jpg
  63   Tue Aug 15 10:17:39 2023 TD, NSRAL108 +/-15V PSU test at EAR2, n_TOF Monday 14 August
On the morning of Monday 14 August 2x RAL108 +/-15V PSUs were borrowed from the Edinburgh equipment in the ISOLDE hall to check whether the same transient 
noise is observed at the +/-15V PSU outputs.


PSU #2 Farnell MX2

Setup - attachment 1

DSO ch#1 +15V AC/1M, ch#2 -15V AC/1M - y: 50mV/div x: 1us, 500ns, 250ns & 25us/div - attachments 2-5



PSU #1 Coutant HSC15-3.0

Setup - attachment 6

DSO ch#1 +15V AC/1M, ch#2 -15V AC/1M - y: 50mV/div x: 25us/div - attachment 7


Conclusion

Observe same amplitude and HF structure with all 3x RAL108 +/-15V PSUs
Attachment 1: 20230814_083448.jpg
20230814_083448.jpg
Attachment 2: 20230814_083549.jpg
20230814_083549.jpg
Attachment 3: 20230814_083556.jpg
20230814_083556.jpg
Attachment 4: 20230814_083601.jpg
20230814_083601.jpg
Attachment 5: 20230814_083445.jpg
20230814_083445.jpg
Attachment 6: 20230814_083323.jpg
20230814_083323.jpg
Attachment 7: 20230814_083319.jpg
20230814_083319.jpg
  67   Mon Aug 21 12:08:59 2023 TDRAL108 +/-15V PSU test - JCMB 21.8.23
PSU Calex

Setup, PSU and ac mains filter - attachments 1-3


DSO ch#1 +15V AC/1M, ch#2 -15V AC/1M - y: 50mV/div x: 100ns, 200ns, 1us, 2us, 10us/div

Without ac mains filter - attachments 4-8



DSO ch#1 +15V AC/1M, ch#2 -15V AC/1M - y: 10mV/div x: 100ns, 200ns, 1us, 2us, 10us/div

With ac mains filter - attachments 9-13

Conclusion - Claud Lyons Ltd STF Series Surge & Transient Power Filter produces c. x 2 attenuation of HF noise transients
Attachment 1: 20230821_115139.jpg
20230821_115139.jpg
Attachment 2: 20230821_115314.jpg
20230821_115314.jpg
Attachment 3: 20230821_115259.jpg
20230821_115259.jpg
Attachment 4: 20230821_115144.jpg
20230821_115144.jpg
Attachment 5: 20230821_115156.jpg
20230821_115156.jpg
Attachment 6: 20230821_115206.jpg
20230821_115206.jpg
Attachment 7: 20230821_115216.jpg
20230821_115216.jpg
Attachment 8: 20230821_115229.jpg
20230821_115229.jpg
Attachment 9: 20230821_115415.jpg
20230821_115415.jpg
Attachment 10: 20230821_115424.jpg
20230821_115424.jpg
Attachment 11: 20230821_115438.jpg
20230821_115438.jpg
Attachment 12: 20230821_115447.jpg
20230821_115447.jpg
Attachment 13: 20230821_115457.jpg
20230821_115457.jpg
  66   Sat Aug 19 14:14:26 2023 TDRAL108 +/-15V PSU test - JCMB 18.8.23
PSU Calex

Setup and PSU details - attachments 1-3

DSO ch#1 +15V AC/1M, ch#2 -15V AC/1M - y: 20mV/div x: 100ns, 200ns, 1us, 2us, 10us, 20us & 100us/div - attachments 4-10
Attachment 1: 20230818_115256.jpg
20230818_115256.jpg
Attachment 2: 20230818_120358.jpg
20230818_120358.jpg
Attachment 3: 20230818_120127.jpg
20230818_120127.jpg
Attachment 4: 20230818_115311.jpg
20230818_115311.jpg
Attachment 5: 20230818_115329.jpg
20230818_115329.jpg
Attachment 6: 20230818_115250.jpg
20230818_115250.jpg
Attachment 7: 20230818_115421.jpg
20230818_115421.jpg
Attachment 8: 20230818_115341.jpg
20230818_115341.jpg
Attachment 9: 20230818_115409.jpg
20230818_115409.jpg
Attachment 10: 20230818_115352.jpg
20230818_115352.jpg
  54   Fri Aug 11 09:11:04 2023 AnniePulse Settings
Attachment 1: IMG_2908.JPG
IMG_2908.JPG
Attachment 2: IMG_2909.JPG
IMG_2909.JPG
Attachment 3: IMG_2910.JPG
IMG_2910.JPG
Attachment 4: IMG_2911.JPG
IMG_2911.JPG
  57   Fri Aug 11 10:12:02 2023 AnniePressure, voltage and current check
Attachment 1: IMG_2915.JPG
IMG_2915.JPG
Attachment 2: IMG_2916.JPG
IMG_2916.JPG
Attachment 3: IMG_2918.JPG
IMG_2918.JPG
  94   Fri Jul 18 12:04:36 2025 CLWPresence at CERN

Excel sheet for presence at CERN during 41Ca run. Please update if required. 

https://docs.google.com/spreadsheets/d/19OzH7bpnHb-YeOskNBGlrhEkPZmDsPDw9y0tleU0Soo/edit?gid=0#gid=0

ELOG V3.1.4-unknown