AIDA GELINA BRIKEN nToF CRIB ISOLDE CIRCE nTOFCapture DESPEC DTAS EDI_PSA 179Ta CARME StellarModelling DCF K40
  nTOFCapture, all entries  ELOG logo
ID Date Author Subject
  65   Tue Apr 16 15:24:45 2024 ARZn68 Analysis: Au resonance SAMMY fits
Attachment 1: Au_4ev_yield_sammy_fit_det1.pdf
Au_4ev_yield_sammy_fit_det1.pdf
Attachment 2: Au_45-48ev_sammy_fit_det1.pdf
Au_45-48ev_sammy_fit_det1.pdf
Attachment 3: Au_59-62ev_sammy_fit_det1.pdf
Au_59-62ev_sammy_fit_det1.pdf
Attachment 4: Au_78ev_sammy_fit_det1.pdf
Au_78ev_sammy_fit_det1.pdf
Attachment 5: Au_107ev_sammy_fit_det1.pdf
Au_107ev_sammy_fit_det1.pdf
  64   Thu Apr 4 09:50:36 2024 CLWFirst Si analysis 2024 run

Au and Si29 runs normalised by proton number show consistency (dedicated pulses, example detector 4). Plots for tof spectra zooming on one resonance and histogram of counts in this resonance divided by protons with statistical errors.

Plots were produced with the macros attached.

Attachment 1: au_counts.pdf
au_counts.pdf
Attachment 2: au.pdf
au.pdf
Attachment 3: si29_counts.pdf
si29_counts.pdf
Attachment 4: si29.pdf
si29.pdf
Attachment 5: consistency.C
#include "TCanvas.h"
#include "TBrowser.h"
#include "TH2F.h"
#include "TH1F.h"
#include "TGraph.h"
#include "TGraphErrors.h"
#include "TMath.h"
#include <fstream>
#include "TFrame.h"
#include "TSystem.h"
#include "TLegend.h"
#include "TLegendEntry.h"
#include "TFile.h"
#include "TROOT.h"
#include "TStyle.h"
#include "TBox.h"
#include "TRandom.h"
#include "TObject.h"
#include "TObjString.h"
#include <iostream>
#include <cstdio>
#include <string>
#include <sstream>
#include "TLine.h"
#include "TTree.h"
#include "TBrowser.h"
#include "TF1.h"
#include <TStyle.h>
#include <THStack.h>
#include <TPad.h>
#include "TRandom.h"




void plot(){
    // replace this with name of your singles file
    TFile *f=new TFile("Single_Si29_ded.root","read");
    TString histo, norm, protons;
    
    ///file with a list of the histogram names for one detector
    // format Zn_T_u3_C6D6_runxxxxxx Zn_A_u3_SILI_runxxxxxx Zn_h_info_C6D6_runxxxxxx
    ifstream inni("Si29_C6D64_HistList.dat");
    TCanvas *c=new TCanvas();

    /// replace this with the tof around a resonance, i.e. binlow is the start of the resonance, binhigh is the end of the resonance
    // you can choose any resonance, best is a large one which is usally at big tof values
    /// this will be different for Au and for Zn.

float binlow=2250000;
float binhigh=2400000;

    TLegend *legend = new TLegend(0.65, 0.38, 0.89, 0.89);
    legend->SetBorderSize(1);
    legend->SetFillColor(0);
    legend->SetTextSize(0.03);
    int count2=0;
    int count_protons=0;
    
    
    //// replace this with the number of lines in your file "list"
int lines=59;

            float value[lines];
            float value2[lines];
            float valuesili[lines];
            float valuepkup[lines];
    float staterror[lines];
    while(1){
        
        inni>>histo>>norm>>protons;
        if ( ! inni ) break;

        
        char *s;
        if(count2==0) s="hist";
        if(count2>0)s="hist same";
        count2++;
        cout<<histo<<" "<<norm<<endl;
        
        
        TH1F *h=(TH1F*)f->Get(histo);
        //TH1F *hnorm=(TH1F*)f->Get(norm);
        TH1F *hpro=(TH1F*)f->Get(protons);
        
        
        int bin1=h->FindBin(binlow); //Ge70Bins
        int bin2=h->FindBin(binhigh);
        
        // this gives the total number of count in the resonance
        
        int counter2=h->Integral(bin1,bin2);

      
    
    value[count2-1]=float(counter2)/hpro->GetBinContent(4)*7E12;
        staterror[count2-1]=sqrt(float(counter2))/hpro->GetBinContent(4)*7E12;
             value2[count2-1]=float(counter2);
             valuesili[count2-1]=float(hpro->GetBinContent(4)/hpro->GetBinContent(8));
            valuepkup[count2-1]=float(hpro->GetBinContent(4)/hpro->GetBinContent(7));
   
        h->Scale(1/hpro->GetBinContent(4)*7E12);
        h->Rebin(50);
        h->SetLineColor(count2);
        h->DrawCopy(s);
        legend->AddEntry(h,histo, "l");
    }
    float sum=0;
    float weight=0;
     float weightsum=0;   
    for(int i=0;i<count2;i++){

        weight=value2[i]/(value[i]*value[i]);

       sum=sum+value[i]*weight;


        weightsum=weightsum+weight;

        cout<<value[i]<<" "<<weight<<" "<<i<<endl;
    }


cout<< sum/weightsum <<endl;
   
    float deviation=0;
double stddev=0;

    for(int i=0;i<count2;i++){
        deviation=(sum/weightsum-value[i])/sum*weightsum*100;

stddev=(sum/weightsum-value[i])*(sum/weightsum-value[i])+stddev;

        cout<<" "<<deviation<<" % "<<sqrt(value2[i])/value2[i]*100<<" % counting "<<deviation/(sqrt(value2[i])/value2[i]*100)<< "   "<<i<<endl;
    }
    deviation=sqrt(1/count2*deviation);
    cout<<count2<<" "<<sum/count2<<endl;

double stddev2=sqrt(1/(float(count2-1))*stddev);

//STOP PROTON SCALING

cout<<"std dev is "<<stddev2/(sum/weightsum)*100<<" %"<<endl;
    legend->Draw();
cout<<"                                "<<endl;
    for(int i=0;i<count2;i++){

        cout<<" "<<valuesili[i]<<"  Prot/SILI    "<<valuepkup[i]<<"  Prot/PKUP   "<<valuesili[i]/valuepkup[i]<<" SILI/PKUP"<<endl;
    }


TH1F *hprosi=new TH1F("","",50,0,50);
TH1F *hprook=new TH1F("","",50,0,50);
TH1F *hsipk=new TH1F("","",50,0,50);
    TH1F *hcounts=new TH1F("","",50,0,50);

for(int i=0;i<count2;i++){
hprosi->SetBinContent(i+1,valuesili[i]);
hprook->SetBinContent(i+1,valuepkup[i]);
hsipk->SetBinContent(i+1,valuesili[i]/valuepkup[i]);
    hcounts->SetBinContent(i+1,value[i]);
    hcounts->SetBinError(i+1,staterror[i]);
    }

TCanvas *c3=new TCanvas;
c3->Divide(2,2);
c3->cd(1);
hprosi->Draw();
c3->cd(2);
hprook->Draw();
c3->cd(3);
hsipk->Draw();
    c3->cd(4);
    hcounts->Draw();
    
    
    TCanvas *c5=new TCanvas;
    hcounts->Draw();
}










void plotau(){
    // replace this with name of your singles file
    TFile *f=new TFile("Single_Au_ded.root","read");
    TString histo, norm, protons;
    
    ///file with a list of the histogram names for one detector
    // format Zn_T_u3_C6D6_runxxxxxx Zn_A_u3_SILI_runxxxxxx Zn_h_info_C6D6_runxxxxxx
    ifstream inni("Au_C6D64_HistList.dat");
    TCanvas *c=new TCanvas();

    /// replace this with the tof around a resonance, i.e. binlow is the start of the resonance, binhigh is the end of the resonance
    // you can choose any resonance, best is a large one which is usally at big tof values
    /// this will be different for Au and for Zn.

float binlow=12000000;
float binhigh=14000000;

    TLegend *legend = new TLegend(0.65, 0.38, 0.89, 0.89);
    legend->SetBorderSize(1);
    legend->SetFillColor(0);
    legend->SetTextSize(0.03);
    int count2=0;
    int count_protons=0;
    
    
    //// replace this with the number of lines in your file "list"
int lines=59;

            float value[lines];
            float value2[lines];
            float valuesili[lines];
            float valuepkup[lines];
    float staterror[lines];
    while(1){
        
        inni>>histo>>norm>>protons;
        if ( ! inni ) break;

        
        char *s;
        if(count2==0) s="hist";
        if(count2>0)s="hist same";
        count2++;
        cout<<histo<<" "<<norm<<endl;
        
        
        TH1F *h=(TH1F*)f->Get(histo);
        //TH1F *hnorm=(TH1F*)f->Get(norm);
        TH1F *hpro=(TH1F*)f->Get(protons);
        
        
        int bin1=h->FindBin(binlow); //Ge70Bins
        int bin2=h->FindBin(binhigh);
        
        // this gives the total number of count in the resonance
        
        int counter2=h->Integral(bin1,bin2);

      
    
    value[count2-1]=float(counter2)/hpro->GetBinContent(4)*7E12;
        staterror[count2-1]=sqrt(float(counter2))/hpro->GetBinContent(4)*7E12;
             value2[count2-1]=float(counter2);
             valuesili[count2-1]=float(hpro->GetBinContent(4)/hpro->GetBinContent(8));
            valuepkup[count2-1]=float(hpro->GetBinContent(4)/hpro->GetBinContent(7));
   
        h->Scale(1/hpro->GetBinContent(4)*7E12);
        h->Rebin(50);
        h->SetLineColor(count2);
        h->DrawCopy(s);
        legend->AddEntry(h,histo, "l");
    }
    float sum=0;
    float weight=0;
     float weightsum=0;
    for(int i=0;i<count2;i++){

        weight=value2[i]/(value[i]*value[i]);

       sum=sum+value[i]*weight;


        weightsum=weightsum+weight;

        cout<<value[i]<<" "<<weight<<" "<<i<<endl;
    }


cout<< sum/weightsum <<endl;
   
    float deviation=0;
double stddev=0;

    for(int i=0;i<count2;i++){
        deviation=(sum/weightsum-value[i])/sum*weightsum*100;

stddev=(sum/weightsum-value[i])*(sum/weightsum-value[i])+stddev;

        cout<<" "<<deviation<<" % "<<sqrt(value2[i])/value2[i]*100<<" % counting "<<deviation/(sqrt(value2[i])/value2[i]*100)<< "   "<<i<<endl;
    }
    deviation=sqrt(1/count2*deviation);
    cout<<count2<<" "<<sum/count2<<endl;

double stddev2=sqrt(1/(float(count2-1))*stddev);

//STOP PROTON SCALING

cout<<"std dev is "<<stddev2/(sum/weightsum)*100<<" %"<<endl;
    legend->Draw();
cout<<"                                "<<endl;
    for(int i=0;i<count2;i++){
... 36 more lines ...
Attachment 6: List_Formatter.cpp
// g++ -Wall -O3 -g List_Formatter.cpp -o List_Formatter && ./List_Formatter

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <vector>

using namespace std;

int main(){
	
	string sample_name = "Au"; //A prefix for the TTOFSort output file histogram names, e.g. Zn1 is the first block of zinc runs
	
    int runlist[]={118026, 118027, 118028, -1};
		
	for(int detn = 1; detn <= 4; detn++){ //Loop over 4 C6D6 detectors
		
		string outname = sample_name; //Create output file name in the format Sample_C6D6#_HistList.dat
		outname += "_C6D6";
		stringstream formatter;
		formatter << detn;
		outname += formatter.str(); //This string stream now contains detector name integer converted to string
		outname += "_HistList.dat";
		
		ofstream ofile;
		ofile.open(outname.c_str());
		if(!ofile.is_open()){cout << "ERROR: Cannot open output file " << outname << endl; return 0;}
		
		for(int run_index = 0; run_index < (int)(sizeof(runlist) / sizeof(int)); run_index++){ //Loop over each of the runs
			
			if(runlist[run_index] != -1){
				
				stringstream run_str;
				run_str << runlist[run_index]; //Save run number as string
				
				string histname1 = sample_name;
				histname1 += "_T_u";
				histname1 += formatter.str();
				histname1 += "_C6D6_run";
				histname1 += run_str.str();
				
				string histname2 = sample_name;
				histname2 += "_A_u";
				histname2 += formatter.str();
				histname2 += "_SILI_run";
				histname2 += run_str.str();
				
				string histname3 = sample_name;
				histname3 += "_h_info_C6D6_run";
				histname3 += run_str.str();
				
				run_str.str(""); //Clear the stringstream
				
				ofile << histname1 << " " << histname2 << " " << histname3 << endl;
			}
		}
		
		formatter.str(""); //Clear the stringstream
		
		ofile.close();
	}
	
	return 0;
}

  63   Tue Mar 26 11:04:29 2024 ARSi-29 and Si-28 sample images and info

Sample information Excel sheet attached below.

Images 1-6: Si-29 sample

Images 6-10: Si-28 sample

Image 11: screenshot from Excel sheet for Si-29

Image 12: screenshot from Excel sheet for Si-28

Image 13: screenshot from Excel sheet for Dummy

Both samples were only able to be weighed inside the capsule as they were very crumbly and unable to be weighed alone (see images). The capsule was weighed before the sample was put in it and thus the mass of Si can be found by subtracting the capsule mass from the measured mass.

Average mass Si-29: 0.8568g pm 0.0002

Average mass Si-28: 0.9551 pm 0.0002

Average mass Dummy: 0.0765 pm 0.0001

 

Attachment 1: IMG_8947.jpg
IMG_8947.jpg
Attachment 2: IMG_8934.jpg
IMG_8934.jpg
Attachment 3: IMG_8932.jpg
IMG_8932.jpg
Attachment 4: IMG_8936.jpg
IMG_8936.jpg
Attachment 5: IMG_8933.jpg
IMG_8933.jpg
Attachment 6: IMG_8940.jpg
IMG_8940.jpg
Attachment 7: IMG_8960.jpg
IMG_8960.jpg
Attachment 8: IMG_8959.jpg
IMG_8959.jpg
Attachment 9: IMG_8957.jpg
IMG_8957.jpg
Attachment 10: IMG_8953.jpg
IMG_8953.jpg
Attachment 11: Silicon_2024_Samples.xlsx
  62   Mon Mar 25 09:07:53 2024 NickProton Monitoring

https://docs.google.com/spreadsheets/d/18lk27N6Pb2iT_xtDA-1T1c9vVubXTJ0OsaDjOxErP0I/edit?usp=sharing

  61   Sat Mar 23 15:06:44 2024 NickDetector Setup - 28/29Si Campaign 2024

Campaign started yesterday. C6D6s placed at 9 cm distance, angle 125 degrees w.r.t beamline.

Measured calibration sources: Cs137, Y88, AmBe, CmC. Measuring Si-nat over the weekend.

Detector          Voltage

    C6D6_D_1 1550          
    C6D6_E_2 1590          
    C6D6_H_3 1460          
    C6D6_L_4 1450

 

Attachment 1: 20240322_145150.JPG
20240322_145150.JPG
Attachment 2: 20240322_144319.JPG
20240322_144319.JPG
Attachment 3: 20240322_144309.JPG
20240322_144309.JPG
Attachment 4: 20240322_144304.JPG
20240322_144304.JPG
Attachment 5: 20240322_144251.JPG
20240322_144251.JPG
Attachment 6: 20240322_144247.JPG
20240322_144247.JPG
Attachment 7: 20240322_144243.JPG
20240322_144243.JPG
Attachment 8: 20240322_144239.JPG
20240322_144239.JPG
Attachment 9: 20240322_144234.JPG
20240322_144234.JPG
  60   Fri Mar 1 14:35:04 2024 ARZn updated wartime v weighted plots

Updated plots with new WFs. Rebinned by 10.

Attachment 1: det1_deadcorr_v_weighted_d_Zn.pdf
det1_deadcorr_v_weighted_d_Zn.pdf
Attachment 2: det1_deadtime_corr_pvd_Zn.pdf
det1_deadtime_corr_pvd_Zn.pdf
Attachment 3: det1_dedcorr_v_weighted_p_Zn.pdf
det1_dedcorr_v_weighted_p_Zn.pdf
Attachment 4: det1_weighted_pvd_Zn.pdf
det1_weighted_pvd_Zn.pdf
Attachment 5: det2_deadcorr_v_weighted_d_Zn.pdf
det2_deadcorr_v_weighted_d_Zn.pdf
Attachment 6: det2_deadcorr_v_weighted_p_Zn.pdf
det2_deadcorr_v_weighted_p_Zn.pdf
Attachment 7: det2_deadtime_corr_pvd_Zn.pdf
det2_deadtime_corr_pvd_Zn.pdf
Attachment 8: det2_weighted_pvd_Zn.pdf
det2_weighted_pvd_Zn.pdf
Attachment 9: det3_deadcorr_v_weighted_d_Zn.pdf
det3_deadcorr_v_weighted_d_Zn.pdf
Attachment 10: det3_deadcorr_v_weighted_p_Zn.pdf
det3_deadcorr_v_weighted_p_Zn.pdf
Attachment 11: det3_deadtime_corr_pvd_Zn.pdf
det3_deadtime_corr_pvd_Zn.pdf
Attachment 12: det3_deadtime_correction_pvd_Zn.pdf
det3_deadtime_correction_pvd_Zn.pdf
Attachment 13: det3_weighted_pvd_Zn.pdf
det3_weighted_pvd_Zn.pdf
  59   Tue Feb 27 11:37:39 2024 ARUpdated Au Deadtime Corrected Spectra & Weighted Spectra Plots

Plots made with new weighting functions. All rebinned by 10.

Attatchments 1-4: Detector 1.

Attatchments 5-8: Detector 2.

Attatchments 9-12: Detector 3.

Attachment 1: Det1_Deadtime_Corr_pvd_Au.pdf
Det1_Deadtime_Corr_pvd_Au.pdf
Attachment 2: Det1_DedCorr_v_Weighted_d_Au.pdf
Det1_DedCorr_v_Weighted_d_Au.pdf
Attachment 3: Det1_DedCorr_v_Weighted_p_Au.pdf
Det1_DedCorr_v_Weighted_p_Au.pdf
Attachment 4: Det1_Weighted_pvd_Au.pdf
Det1_Weighted_pvd_Au.pdf
Attachment 5: Det2_Deadtime_Corr_pvd_Au.pdf
Det2_Deadtime_Corr_pvd_Au.pdf
Attachment 6: Det2_DedCorr_v_Weighted_d_Au.pdf
Det2_DedCorr_v_Weighted_d_Au.pdf
Attachment 7: Det2_DedCorr_v_Weighted_p_Au.pdf
Det2_DedCorr_v_Weighted_p_Au.pdf
Attachment 8: Det2_Weighted_pvd_Au.pdf
Det2_Weighted_pvd_Au.pdf
Attachment 9: Det3_Deadtime_Corr_pvd_Au.pdf
Det3_Deadtime_Corr_pvd_Au.pdf
Attachment 10: Det3_DedCorr_v_Weighted_d_Au.pdf
Det3_DedCorr_v_Weighted_d_Au.pdf
Attachment 11: Det3_DedCorr_v_Weighted_p_Au.pdf
Det3_DedCorr_v_Weighted_p_Au.pdf
Attachment 12: Det3_Weighted_pvd_Au.pdf
Det3_Weighted_pvd_Au.pdf
  58   Fri Dec 1 15:34:01 2023 ARCorrected BG Subtraction plots for Zn and Au

Updated plots for Zn and Au

Attachment 1: Au_BG_correction_comp_weighted_det3_zoomed_rebinned5.pdf
Au_BG_correction_comp_weighted_det3_zoomed_rebinned5.pdf
Attachment 2: Au_BG_correction_comp_weighted_det2_zoomed_rebinned5.pdf
Au_BG_correction_comp_weighted_det2_zoomed_rebinned5.pdf
Attachment 3: Au_BG_correction_comp_weighted_det1_zoomed_rebinned5.pdf
Au_BG_correction_comp_weighted_det1_zoomed_rebinned5.pdf
Attachment 4: Zn_BG_Correction_Comp_Weighted_det3.pdf
Zn_BG_Correction_Comp_Weighted_det3.pdf
Attachment 5: Zn_BG_Correction_Comp_weighted_det2.pdf
Zn_BG_Correction_Comp_weighted_det2.pdf
Attachment 6: Zn_BG_Correction_Comp_Weighted_det1.pdf
Zn_BG_Correction_Comp_Weighted_det1.pdf
  57   Thu Nov 30 14:43:28 2023 ARZn + Au Background subtraction: Plots

Plots for Zn and Au with Empty subtracted, and compared to weighted spectra.

Note: Au are logged x and y, Zn is only logged x.

Attachment 1: Au_BG_correction_det3_inc_uncorr.pdf
Au_BG_correction_det3_inc_uncorr.pdf
Attachment 2: Au_BG_correction_det2_inc_uncorr.pdf
Au_BG_correction_det2_inc_uncorr.pdf
Attachment 3: Au_BG_Correction_det1_inc_uncorr.pdf
Au_BG_Correction_det1_inc_uncorr.pdf
Attachment 4: Zn_BG_Correction_det3_R3_inc_uncorr.pdf
Zn_BG_Correction_det3_R3_inc_uncorr.pdf
Attachment 5: Zn_BG_Correction_det3_R2_inc_uncorr.pdf
Zn_BG_Correction_det3_R2_inc_uncorr.pdf
Attachment 6: Zn_BG_Correction_det3_R1_inc_uncorr.pdf
Zn_BG_Correction_det3_R1_inc_uncorr.pdf
Attachment 7: Zn_BG_Correction_det2_R3_inc_uncorr.pdf
Zn_BG_Correction_det2_R3_inc_uncorr.pdf
Attachment 8: Zn_BG_Correction_det2_R2_inc_uncorr.pdf
Zn_BG_Correction_det2_R2_inc_uncorr.pdf
Attachment 9: Zn_BG_Correction_det2_R1_inc_uncorr.pdf
Zn_BG_Correction_det2_R1_inc_uncorr.pdf
Attachment 10: Zn_BG_Correction_det1_R1_inc_uncorr.pdf
Zn_BG_Correction_det1_R1_inc_uncorr.pdf
Attachment 11: Zn_BG_Corrected_det1_R3_inc_uncorr.pdf
Zn_BG_Corrected_det1_R3_inc_uncorr.pdf
Attachment 12: Zn_BG_Correction_det1_R2_inc_uncorr.pdf
Zn_BG_Correction_det1_R2_inc_uncorr.pdf
Attachment 13: Au_BG_Correction_Comp_weighted_det3_zoom.pdf
Au_BG_Correction_Comp_weighted_det3_zoom.pdf
Attachment 14: Au_BG_Corection_Comp_Weighted_det2_Zoom.pdf
Au_BG_Corection_Comp_Weighted_det2_Zoom.pdf
Attachment 15: Au_BG_Correction_Comp_Weighted_det1_Zoom.pdf
Au_BG_Correction_Comp_Weighted_det1_Zoom.pdf
Attachment 16: Zn_BG_Correction_Comp_Weighted_det3_zoom.pdf
Zn_BG_Correction_Comp_Weighted_det3_zoom.pdf
Attachment 17: Zn_BG_Correction_Comp_Weighted_det3.pdf
Zn_BG_Correction_Comp_Weighted_det3.pdf
Attachment 18: Zn_BG_Correction_Comp_Weighted_det2_zoom.pdf
Zn_BG_Correction_Comp_Weighted_det2_zoom.pdf
Attachment 19: Zn_BG_Correction_Comp_weighted_det2.pdf
Zn_BG_Correction_Comp_weighted_det2.pdf
Attachment 20: Zn_BG_Correction_Comp_Weighted_det1_zoom.pdf
Zn_BG_Correction_Comp_Weighted_det1_zoom.pdf
Attachment 21: Zn_BG_Correction_Comp_Weighted_det1.pdf
Zn_BG_Correction_Comp_Weighted_det1.pdf
  56   Wed Nov 15 13:40:50 2023 ClaudiaDetermination of neutron capture yield and related corrections

Here are all the files needed for calculation of the yield. There is some information that still needs to be added to the energyandyield.c file, for example the atomic mass of your target in amu, the neutron separation energy for the compound nucleus in MeV (this is needed due to using the Weighting technique). Also, you need to add some lines  to read the tof histogram, which will then be converted in a neutron energy hisogram and then divided by the flux.

For the conversion to neutron energy we assume an approximate flight path for now. We will determine this more accurately once we have the yields and fit resonances. Emma will need to use a different flux than Annie, because we have a different spallation target. Emma's flux is preliminary, so we also should look at the SILI detectors at some point.

There are some more instances where names for rootfiles and ascii files need to be added. In the first instance, please try and add the missing information and try running the code. I haven't tested it so there may be still problem.  To run it you will need to download the 3 rootfiles into the same folder (or move somewhere else and adjust the path name in the .c file.

PLEASE set variable THRESHSCALER to 1 for now. We dont know yet what it is :-)

Attachment 1: evalFlux_prelim.root
Attachment 2: nTOF-Ph2_fluence_2009-2011_6Dec2011.root
Attachment 3: BIF_2011_norm.root
Attachment 4: energyandyield.c
#include "TCanvas.h"
#include "TBrowser.h"
#include "TH2F.h"
#include "TH1F.h"
#include "TGraph.h"
#include "TGraphErrors.h"
#include "TMath.h"
#include <fstream>
#include "TFrame.h"
#include "TSystem.h"
#include "TLegend.h"
#include "TLegendEntry.h"
#include "TFile.h"
#include "TROOT.h"
#include "TStyle.h"
#include "TBox.h"
#include "TRandom.h"
#include "TObject.h"
#include "TObjString.h"
#include <iostream>
#include <cstdio>
#include <string>
#include <sstream>
#include "TLine.h"
#include "TTree.h"
#include "TBrowser.h"
#include "TF1.h"
#include <TStyle.h>
#include <THStack.h>
#include <TPad.h>
#include "TRandom.h"


using namespace std;

TH1F *toftoene_fixedbin(TH1F *htof,Double_t L,Double_t offset,Int_t binoffset);
void WriteHistogramFile(TString filename,TH1F *h);

float Sn= 0  ; // neutron separation energy in MeV
float Amass= 0; // mass of your nucleus in atomic mass units

/// L flight path in cm, assumed
/// offset ... any offset in time of flight from daq (N/A here, hence 0)
/// binoffset this is just to exclude very low tof bins which are at too high energy to be of interest 10000 should be ok

void run(){

    /// LOAD TIME OF FLIGHT SPECTRUM
    
    TH1F *hene=toftoene_fixedbin(NAMEOFTOFSPECTRUM,18500,0,10000);
    

    hene->Draw();  /// draw tof histogram concerted to energy
    
    TH1F *h_me=(TH1F*)hene->Clone();
    
    //// NOW moving on to division by flux
     /// the neutron flux is given per bunch assuming a standard proton intensity of 7E12 protons / bunch. Hence the division is by no of protons and then multiplied by 7E12 to get to the number of standard bunches
    
    
   h_me->Scale(1/(h_mon->GetBinContent(4)/7E12));

    
    
    /// file that contains the neutron flux. We are looking at the flux in isolethargic units
    TFile *fflux = new TFile("nTOF-Ph2_fluence_2009-2011_6Dec2011.root", "read"); //for EMMA: evalFlux_prelim.root
    
    TH1F *sim = (TH1F*)fflux->Get("hNFluenceEVALUATED2011"); // FOR EMMA: hEval_Abs
    
    //Neutron flux that is independent of the binning of the histogram. The number of neutrons between E1 and E1 can be found by multiplying the value in the histogram by the logarithmic bin width, i.e. log(E2)-log(E1)
      
        TH1F *yield1 = (TH1F*)h_me->Clone();
        
        cout<<"DIVIDE BY FLUX"<<endl;
        for(Int_t i=1; i<=h_me->GetNbinsX(); i++)
        {
            
            float auxbin1 = sim->FindBin(h_me->GetBinCenter(i));  // find the bin in the flux histogram
            float scaler1 = TMath::Log(h_me->GetBinLowEdge(i+1)/h_me->GetBinLowEdge(i)); // determine the binwidth of count histogram

            yield1->SetBinContent(i,h_me->GetBinContent(i)/(sim->GetBinContent(auxbin1)*scaler1));
            // this is the division by the flux. The number of coutns gets divided by the number of neutrons in that particular bin
            
            if(sim->GetBinContent(auxbin1)<=0)yield1->SetBinContent(i,0); // this is in case the flux histgram has a content <=0, so we do not divide by a negative or 0
           
             if(sim->GetBinContent(auxbin1)>0){
                 
            float binerr_rel=sqrt(pow(h_me->GetBinError(i)/h_me->GetBinContent(i),2) + pow(sim->GetBinError(auxbin1)/sim->GetBinContent(auxbin1),2));
                 
                 // this calculates the relative uncertainty taking into consideration the sample uncertainties and the uncertaities in the flux histogram
                 
            float binerr=binerr_rel*yield1->GetBinContent(i);
                  // calculation of absolute uncertainty
                 
            if(h_me->GetBinContent(i)==0)binerr=h_me->GetBinError(i)/(sim->GetBinContent(auxbin1)*scaler1);
                 /// this is again to avoid divition by  0

            yield1->SetBinError(i,binerr);
            }



        }


        for(int g=1;g<=h_me->GetNbinsX();g++)
        {
    yield1->SetBinContent(g,yield1->GetBinContent(g)*threshscaler/(Sn+  Amass/(1.0086649+Amass)*yield1->GetBinCenter(g)/1e6));
    yield1->SetBinError(g,yield1->GetBinError(g)*threshscaler/(Sn+  Amass/(1.0086649+Amass)*yield1->GetBinCenter(g)/1e6));
    }
     
    
   // this is an additional correction since the neutron beam size varies slightly with neutrom energy. Emma, you can skip that for now as it will be different for you, and we dont have that information yet.
    
        cout << "BIF CORRECTION" <<endl;
        
        TFile *bif=new TFile("BIF_2011_norm.root","read");
        TH1F *hbif=(TH1F*)bif->Get("histo");
        
        
        
        for(int f=1;f<=yield1->GetNbinsX();f++){
            float center=yield1->GetBinCenter(f);
            int binni=hbif->FindBin(center);
            
            yield1->SetBinContent(f,yield1->GetBinContent(f)/hbif->GetBinContent(binni));

            float binerr_rel=sqrt(pow(yield1->GetBinError(f)/yield1->GetBinContent(f),2) + pow(hbif->GetBinError(binni)/hbif->GetBinContent(binni),2));
            float binerr=binerr_rel*yield1->GetBinContent(f);
            if(yield1->GetBinContent(f)==0)binerr=yield1->GetBinError(f)/hbif->GetBinContent(binni);

            yield1->SetBinError(f,binerr);
        }

    cout <<"BIF CORRECTION DONE"<<endl;
    
    
    
        
    yield1->GetXaxis()->SetTitle("energy (eV)");
    yield1->GetYaxis()->SetTitle("yield");

    cout <<"WRITE FILE"<<endl;
    
    // we are writing the yield as root file and as a data file, since that is the input for resonance fitting.

    TFile *gefinalyield= new TFile(NAME, "update");
    yield1->Write(histosam);
    gefinalyield->Write();
    gefinalyield->Close();

    cout <<"ROOT FILE WRITTEN"<<endl;

    WriteHistogramFile(FILENAME,yield1);

    cout <<"TEXT FILE WRITTEN"<<endl;
    
    
}





TH1F *toftoene_fixedbin(TH1F *htof,Double_t L,Double_t offset,Int_t binoffset){
    
    
int number=htof->GetNbinsX();
float lowedge;
float eneedge[number-binoffset];

const double Mass=939565560.81;            //Neutron Mass
const double c0=29.972458;                 // speed of light

cout<<number<<endl;

for(int i=binoffset;i<=number;i++){
    lowedge=htof->GetBinLowEdge(i)+L/c0+offset;
    eneedge[number-i]=(1/pow(1-((L/(lowedge)/c0)*(L/(lowedge)/c0)),0.5)-1)*Mass;
  
    if(i==30000)cout<<lowedge<<" "<<eneedge[number-i]<<" "<<number-i<<endl;
}


TH1F *hene =new TH1F("Counts","Counts",number-binoffset-1,eneedge);
hene->GetXaxis()->Set(number-1-binoffset,eneedge);


for(int i=1;i<=hene->GetNbinsX();i++){
  
    hene->SetBinContent(i,htof->GetBinContent(number-i));
    hene->SetBinError(i,htof->GetBinError(number-i));

}
    
    
    return hene;

}




void WriteHistogramFile(TString filename,TH1F *h){

  
  FILE * fout;
  
  fout = fopen(filename,"w");
  
  for(Int_t i=1;i<=h->GetNbinsX();i++)
    {
double bincenternew=h->GetBinCenter(i);
double binContent=h->GetBinContent(i);
//if(binContent<0)binContent=0;
double binError=h->GetBinError(i);
if(binError<=0)binError=1e-8;
  if(bincenternew>0.02571)fprintf(fout,"%20.10f%20.10f%20.10f\n",bincenternew,binContent,binError);
      
    }
  fclose(fout);
  
  cout << "*************************************"<< endl;
  cout << " File " << filename  <<" written, with format: E_center_bin, Content, error "<<endl;
  cout << "*************************************"<< endl;


}



  55   Wed Nov 8 11:47:44 2023 ARZn68 TTOFSort codes
Attachment 1: Process_Au_31-10.C
// g++ -Wall -O3 -g `root-config --cflags --ldflags --glibs` process_runs_Zn_full.cpp -o process_runs_Zn_full && ./process_runs_Zn_full

#include <iostream>
#include <TFile.h>
#include <TCanvas.h>
#include <TPad.h>
#include <TAxis.h>
#include <TH1D.h>
#include <TF1.h>
#include <TLegend.h>
#include <TLegendEntry.h>
#include <TDirectory.h>
#include <fstream>
#include <math.h>

#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.h"
#ifndef __CINT__
#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.cxx"
#endif

using namespace std;

Double_t caldet1(Double_t x){return(-0.0126844 + 0.000250511 * x);}
//Double_t caldet1b(Double_t x){return(0.0300862 + 0.000239789 * x);}
//Double_t caldet1c(Double_t x){return(-0.00982159 + 0.000243208 * x);}
Double_t caldet2(Double_t x){return(0.00933879 + 0.000223045 * x);}
Double_t caldet3(Double_t x){return(0.0448306 + 0.000295976 * x);}
Double_t caldet4(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet5(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet6(Double_t x){return(0.039253 + 0.000228249 * x);}

Double_t wfzn1(Double_t x){return(52.4331 - 15.7227 * x + 129.696 * x * x - 21.3173 * x * x * x + 1.23419 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn2(Double_t x){return(54.8656 - 23.9266 * x + 136.114 * x * x - 22.9382 * x * x * x + 1.36142 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn3(Double_t x){return(55.0448 - 24.1592 * x + 135.662 * x * x - 22.6676 * x * x * x + 1.32807 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn4(Double_t x){return(53.7253 - 20.1490 * x + 133.263 * x * x - 22.2370 * x * x * x + 1.30748 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t wfau1(Double_t x){return(33.0459 - 14.2600 * x + 79.6741 * x * x - 12.5454 * x * x * x + 75.7094 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau2(Double_t x){return(31.1978 - 8.63083 * x + 76.0325 * x * x - 11.7987 * x * x * x + 71.1593 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau3(Double_t x){return(30.1989 - 5.58729 * x + 74.0714 * x * x - 11.4009 * x * x * x + 68.8028 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau4(Double_t x){return(30.0116 - 5.09782 * x + 73.9204 * x * x - 11.4115 * x * x * x + 69.3298 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t dummy_function(Double_t x){return 0.;}

int Zn68(){

	Char_t prefix[] = "root://eospublic.cern.ch//eos/experiment/ntof/data/rootfiles/2018/ear1/run";

	Char_t suffix[] = ".root";

	//Int_t runlist_ZnP[]={108570, 108569, 108568, 108567, 108566, 108565, 108560, 108558, -1};

	//Int_t runlist_Zn[]={108347,108348,108349,108350,108351,108352,108353,108354,\
				108355,108357,108359,108360,108361,108362,108363,\
				108364,108400,108399,108398,108397,108396,108395,\
				108411,108410,108409,108408,108407,108406,\
				108419,108418,108417,108416,108415,108414,\
				108444,108443,108442,108441,108440,108439,108438,108437,108436,\
				108435,108434,108433,108432,108431,108430,108429,108428,108427,\
				108426,108425,108423,108422,108462,108461,108460,108459,108458,\
				108457,108520,108519,108518,108517,108516,108515,108514,108513,\
				108512,108523,108527,108526,108525,108524,108539,108538,108537,\
				108536,108535,108560,108559,108548,\
				108570, 108569, 108568, 108567,108566, 108565, 108560, 108558,-1};

	Int_t runlist_E[]={108393,108392,108391,108390,108389,108388,108387,108495,108494,108493,108492,108491,-1};

	Int_t runlist_Au[]={108339,108340,108343,108344,108345,108346,108403,108404,108405,108490,108489,-1}; // isue with 108341? remove?



	TTOFSort *a = new TTOFSort();
	 a->SetEnableMonitorPerBunch(); // include information on monitors per bunch


	a->AddDetector(kC6D6, 4);
	a->AddDetector(kSILI,4);
	a->AddDetector(kPKUP,1);
	a->SetNewVariableNames_amplitude(kC6D6, "amp");   // use instead of variable amp
	a->SetNewVariableNames_amplitude(kSILI ,"amp");
	a->SetNewVariableNames_amplitude(kPKUP ,"amp");

	//a->SetPriorCut(kC6D6,"PulseIntensity>5E12"); a->SetPriorCut(kC6D6,"PulseIntensity>2E12",&&,"PulseIntensity<5E12");
	//a->SetPriorCut(kC6D6,"PulseIntensity>5E12 && detn!=1 && detn!=4 && detn!=5 && detn!=6");
	


		a->SetNewBinParsA(kC6D6, 0.0, 7000, 70000);        // CLW: CHANGED BINNING
		a->SetNewBinParsA(kSILI, 0.0, 7000, 70000);        // CLW: CHANGED BINNING

		 a->SetNewVariableNames_amplitude(kC6D6, "amp");

		 a->SetNewFixedDeadtime(kC6D6, 50.0);    // fixed deadtime of 30 ns
		 a->SetNewCoincidencetime (kC6D6, 40.0); // Coincidences between 30 ns




	a->UseWeightingFunction(kC6D6, wfau1, wfau2, wfau3, wfau4); //Zero the additonal two C6D6s

	a->UseCalibration(kC6D6, caldet1, caldet2, caldet3, caldet4);
	a->SetNewCutsEg(kC6D6, 0.200, 10.0);

	a->ProcessListOfRuns_Single(prefix, runlist_Au, suffix, "Au_single.root", "Au", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_E, suffix, "Au_single.root", "E", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_Au, suffix, "Au_sum.root", "Au", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_E, suffix, "Au_sum.root", "E", "UPDATE");

	return 0;
}
Attachment 2: Process_Au_dedicated_31-10.C
// g++ -Wall -O3 -g `root-config --cflags --ldflags --glibs` process_runs_Zn_full.cpp -o process_runs_Zn_full && ./process_runs_Zn_full

#include <iostream>
#include <TFile.h>
#include <TCanvas.h>
#include <TPad.h>
#include <TAxis.h>
#include <TH1D.h>
#include <TF1.h>
#include <TLegend.h>
#include <TLegendEntry.h>
#include <TDirectory.h>
#include <fstream>
#include <math.h>

#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.h"
#ifndef __CINT__
#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.cxx"
#endif

using namespace std;

Double_t caldet1(Double_t x){return(-0.0126844 + 0.000250511 * x);}
//Double_t caldet1b(Double_t x){return(0.0300862 + 0.000239789 * x);}
//Double_t caldet1c(Double_t x){return(-0.00982159 + 0.000243208 * x);}
Double_t caldet2(Double_t x){return(0.00933879 + 0.000223045 * x);}
Double_t caldet3(Double_t x){return(0.0448306 + 0.000295976 * x);}
Double_t caldet4(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet5(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet6(Double_t x){return(0.039253 + 0.000228249 * x);}

Double_t wfzn1(Double_t x){return(52.4331 - 15.7227 * x + 129.696 * x * x - 21.3173 * x * x * x + 1.23419 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn2(Double_t x){return(54.8656 - 23.9266 * x + 136.114 * x * x - 22.9382 * x * x * x + 1.36142 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn3(Double_t x){return(55.0448 - 24.1592 * x + 135.662 * x * x - 22.6676 * x * x * x + 1.32807 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn4(Double_t x){return(53.7253 - 20.1490 * x + 133.263 * x * x - 22.2370 * x * x * x + 1.30748 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t wfau1(Double_t x){return(33.0459 - 14.2600 * x + 79.6741 * x * x - 12.5454 * x * x * x + 75.7094 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau2(Double_t x){return(31.1978 - 8.63083 * x + 76.0325 * x * x - 11.7987 * x * x * x + 71.1593 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau3(Double_t x){return(30.1989 - 5.58729 * x + 74.0714 * x * x - 11.4009 * x * x * x + 68.8028 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau4(Double_t x){return(30.0116 - 5.09782 * x + 73.9204 * x * x - 11.4115 * x * x * x + 69.3298 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t dummy_function(Double_t x){return 0.;}

int Zn68(){

	Char_t prefix[] = "root://eospublic.cern.ch//eos/experiment/ntof/data/rootfiles/2018/ear1/run";

	Char_t suffix[] = ".root";

	//Int_t runlist_ZnP[]={108570, 108569, 108568, 108567, 108566, 108565, 108560, 108558, -1};

	//Int_t runlist_Zn[]={108347,108348,108349,108350,108351,108352,108353,108354,\
				108355,108357,108359,108360,108361,108362,108363,\
				108364,108400,108399,108398,108397,108396,108395,\
				108411,108410,108409,108408,108407,108406,\
				108419,108418,108417,108416,108415,108414,\
				108444,108443,108442,108441,108440,108439,108438,108437,108436,\
				108435,108434,108433,108432,108431,108430,108429,108428,108427,\
				108426,108425,108423,108422,108462,108461,108460,108459,108458,\
				108457,108520,108519,108518,108517,108516,108515,108514,108513,\
				108512,108523,108527,108526,108525,108524,108539,108538,108537,\
				108536,108535,108560,108559,108548,\
				108570, 108569, 108568, 108567,108566, 108565, 108560, 108558,-1};

	Int_t runlist_E[]={108393,108392,108391,108390,108389,108388,108387,108495,108494,108493,108492,108491,-1};

	Int_t runlist_Au[]={108339,108340,108343,108344,108345,108346,108403,108404,108405,108490,108489,-1}; // isue with 108341? remove?



	TTOFSort *a = new TTOFSort();
	 a->SetEnableMonitorPerBunch(); // include information on monitors per bunch


	a->AddDetector(kC6D6, 4);
	a->AddDetector(kSILI,4);
	a->AddDetector(kPKUP,1);
	a->SetNewVariableNames_amplitude(kC6D6, "amp");   // use instead of variable amp
	a->SetNewVariableNames_amplitude(kSILI ,"amp");
	a->SetNewVariableNames_amplitude(kPKUP ,"amp");

	//a->SetPriorCut(kC6D6,"PulseIntensity>5E12"); a->SetPriorCut(kC6D6,"PulseIntensity>2E12",&&,"PulseIntensity<5E12");
	//a->SetPriorCut(kC6D6,"PulseIntensity>5E12 && detn!=1 && detn!=4 && detn!=5 && detn!=6");
	a->SetPriorCut(kC6D6,"PulseIntensity>5E12"); 
	a->SetPriorCut(kSILI,"PulseIntensity>5E12");
	a->SetPriorCut(kPKUP,"PulseIntensity>5E12");


		a->SetNewBinParsA(kC6D6, 0.0, 7000, 70000);        // CLW: CHANGED BINNING
		a->SetNewBinParsA(kSILI, 0.0, 7000, 70000);        // CLW: CHANGED BINNING

		 a->SetNewVariableNames_amplitude(kC6D6, "amp");

		 a->SetNewFixedDeadtime(kC6D6, 50.0);    // fixed deadtime of 30 ns
		 a->SetNewCoincidencetime (kC6D6, 40.0); // Coincidences between 30 ns




	a->UseWeightingFunction(kC6D6, wfau1, wfau2, wfau3, wfau4); //Zero the additonal two C6D6s

	a->UseCalibration(kC6D6, caldet1, caldet2, caldet3, caldet4);
	a->SetNewCutsEg(kC6D6, 0.200, 10.0);

	a->ProcessListOfRuns_Single(prefix, runlist_Au, suffix, "Au_single_dedicated.root", "Au", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_E, suffix, "Au_single_dedicated.root", "E", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_Au, suffix, "Au_sum_dedicated.root", "Au", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_E, suffix, "Au_sum_dedicated.root", "E", "UPDATE");

	return 0;
}
Attachment 3: Process_Au_parasitic_31-10.C
// g++ -Wall -O3 -g `root-config --cflags --ldflags --glibs` process_runs_Zn_full.cpp -o process_runs_Zn_full && ./process_runs_Zn_full

#include <iostream>
#include <TFile.h>
#include <TCanvas.h>
#include <TPad.h>
#include <TAxis.h>
#include <TH1D.h>
#include <TF1.h>
#include <TLegend.h>
#include <TLegendEntry.h>
#include <TDirectory.h>
#include <fstream>
#include <math.h>

#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.h"
#ifndef __CINT__
#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.cxx"
#endif

using namespace std;

Double_t caldet1(Double_t x){return(-0.0126844 + 0.000250511 * x);}
//Double_t caldet1b(Double_t x){return(0.0300862 + 0.000239789 * x);}
//Double_t caldet1c(Double_t x){return(-0.00982159 + 0.000243208 * x);}
Double_t caldet2(Double_t x){return(0.00933879 + 0.000223045 * x);}
Double_t caldet3(Double_t x){return(0.0448306 + 0.000295976 * x);}
Double_t caldet4(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet5(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet6(Double_t x){return(0.039253 + 0.000228249 * x);}

Double_t wfzn1(Double_t x){return(52.4331 - 15.7227 * x + 129.696 * x * x - 21.3173 * x * x * x + 1.23419 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn2(Double_t x){return(54.8656 - 23.9266 * x + 136.114 * x * x - 22.9382 * x * x * x + 1.36142 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn3(Double_t x){return(55.0448 - 24.1592 * x + 135.662 * x * x - 22.6676 * x * x * x + 1.32807 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn4(Double_t x){return(53.7253 - 20.1490 * x + 133.263 * x * x - 22.2370 * x * x * x + 1.30748 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t wfau1(Double_t x){return(33.0459 - 14.2600 * x + 79.6741 * x * x - 12.5454 * x * x * x + 75.7094 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau2(Double_t x){return(31.1978 - 8.63083 * x + 76.0325 * x * x - 11.7987 * x * x * x + 71.1593 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau3(Double_t x){return(30.1989 - 5.58729 * x + 74.0714 * x * x - 11.4009 * x * x * x + 68.8028 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau4(Double_t x){return(30.0116 - 5.09782 * x + 73.9204 * x * x - 11.4115 * x * x * x + 69.3298 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t dummy_function(Double_t x){return 0.;}

int Zn68(){

	Char_t prefix[] = "root://eospublic.cern.ch//eos/experiment/ntof/data/rootfiles/2018/ear1/run";

	Char_t suffix[] = ".root";

	//Int_t runlist_ZnP[]={108570, 108569, 108568, 108567, 108566, 108565, 108560, 108558, -1};

	//Int_t runlist_Zn[]={108347,108348,108349,108350,108351,108352,108353,108354,\
				108355,108357,108359,108360,108361,108362,108363,\
				108364,108400,108399,108398,108397,108396,108395,\
				108411,108410,108409,108408,108407,108406,\
				108419,108418,108417,108416,108415,108414,\
				108444,108443,108442,108441,108440,108439,108438,108437,108436,\
				108435,108434,108433,108432,108431,108430,108429,108428,108427,\
				108426,108425,108423,108422,108462,108461,108460,108459,108458,\
				108457,108520,108519,108518,108517,108516,108515,108514,108513,\
				108512,108523,108527,108526,108525,108524,108539,108538,108537,\
				108536,108535,108560,108559,108548,\
				108570, 108569, 108568, 108567,108566, 108565, 108560, 108558,-1};

	Int_t runlist_E[]={108393,108392,108391,108390,108389,108388,108387,108495,108494,108493,108492,108491,-1};

	Int_t runlist_Au[]={108339,108340,108343,108344,108345,108346,108403,108404,108405,108490,108489,-1};

	TTOFSort *a = new TTOFSort();
	 a->SetEnableMonitorPerBunch(); // include information on monitors per bunch


	a->AddDetector(kC6D6, 4);
	a->AddDetector(kSILI,4);
	a->AddDetector(kPKUP,1);
	a->SetNewVariableNames_amplitude(kC6D6, "amp");   // use instead of variable amp
	a->SetNewVariableNames_amplitude(kSILI ,"amp");
	a->SetNewVariableNames_amplitude(kPKUP ,"amp");

	//a->SetPriorCut(kC6D6,"PulseIntensity>5E12"); a->SetPriorCut(kC6D6,"PulseIntensity>2E12",&&,"PulseIntensity<5E12");
	//a->SetPriorCut(kC6D6,"PulseIntensity>2E12 && PulseIntensity<5E12 && detn!=1 && detn!=4 && detn!=5 && detn!=6");
	a->SetPriorCut(kC6D6,"PulseIntensity>2E12 && PulseIntensity<5E12");
	a->SetPriorCut(kSILI,"PulseIntensity>2E12 && PulseIntensity<5E12");
	a->SetPriorCut(kPKUP,"PulseIntensity>2E12 && PulseIntensity<5E12");


		a->SetNewBinParsA(kC6D6, 0.0, 7000, 70000);        // CLW: CHANGED BINNING
		a->SetNewBinParsA(kSILI, 0.0, 7000, 70000);        // CLW: CHANGED BINNING

		 a->SetNewVariableNames_amplitude(kC6D6, "amp");

		 a->SetNewFixedDeadtime(kC6D6, 50.0);    // fixed deadtime of 30 ns
		 a->SetNewCoincidencetime (kC6D6, 40.0); // Coincidences between 30 ns



	a->UseWeightingFunction(kC6D6, wfau1, wfau2, wfau3, wfau4); //Zero the additonal two C6D6s

	a->UseCalibration(kC6D6, caldet1, caldet2, caldet3, caldet4);
	a->SetNewCutsEg(kC6D6, 0.200, 10.0);

	a->ProcessListOfRuns_Single(prefix, runlist_Au, suffix, "Au_single_parasitic.root", "Au", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_E, suffix, "Zn_single_ALL_parasitic.root", "E", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_Au, suffix, "Au_sum_parasitic.root", "Au", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_E, suffix, "Zn_sum_ALL_parasitic.root", "E", "UPDATE");

	return 0;
}
Attachment 4: Process_Zn_inc_prob_dedicated.C
// g++ -Wall -O3 -g `root-config --cflags --ldflags --glibs` process_runs_Zn_full.cpp -o process_runs_Zn_full && ./process_runs_Zn_full

#include <iostream>
#include <TFile.h>
#include <TCanvas.h>
#include <TPad.h>
#include <TAxis.h>
#include <TH1D.h>
#include <TF1.h>
#include <TLegend.h>
#include <TLegendEntry.h>
#include <TDirectory.h>
#include <fstream>
#include <math.h>

#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.h"
#ifndef __CINT__
#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.cxx"
#endif

using namespace std;

Double_t caldet1(Double_t x){return(-0.0126844 + 0.000250511 * x);}
//Double_t caldet1b(Double_t x){return(0.0300862 + 0.000239789 * x);}
//Double_t caldet1c(Double_t x){return(-0.00982159 + 0.000243208 * x);}
Double_t caldet2(Double_t x){return(0.00933879 + 0.000223045 * x);}
Double_t caldet3(Double_t x){return(0.0448306 + 0.000295976 * x);}
Double_t caldet4(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet5(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet6(Double_t x){return(0.039253 + 0.000228249 * x);}

Double_t wfzn1(Double_t x){return(52.4331 - 15.7227 * x + 129.696 * x * x - 21.3173 * x * x * x + 1.23419 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn2(Double_t x){return(54.8656 - 23.9266 * x + 136.114 * x * x - 22.9382 * x * x * x + 1.36142 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn3(Double_t x){return(55.0448 - 24.1592 * x + 135.662 * x * x - 22.6676 * x * x * x + 1.32807 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn4(Double_t x){return(53.7253 - 20.1490 * x + 133.263 * x * x - 22.2370 * x * x * x + 1.30748 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t wfau1(Double_t x){return(33.0459 - 14.2600 * x + 79.6741 * x * x - 12.5454 * x * x * x + 75.7094 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau2(Double_t x){return(31.1978 - 8.63083 * x + 76.0325 * x * x - 11.7987 * x * x * x + 71.1593 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau3(Double_t x){return(30.1989 - 5.58729 * x + 74.0714 * x * x - 11.4009 * x * x * x + 68.8028 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau4(Double_t x){return(30.0116 - 5.09782 * x + 73.9204 * x * x - 11.4115 * x * x * x + 69.3298 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t dummy_function(Double_t x){return 0.;}

int Zn68(){

	Char_t prefix[] = "root://eospublic.cern.ch//eos/experiment/ntof/data/rootfiles/2018/ear1/run";

	Char_t suffix[] = ".root";

	//Int_t runlist_ZnP[]={108570, 108569, 108568, 108567, 108566, 108565, 108560, 108558, -1};

	Int_t runlist_Zn[]{108347,108348,108349,108350,108351,108352,108353,108355,108357,108359,108360,108361,108362,\
				108363,108364,108397,108398,108399,108400,108406,108408,\
				108409,108410,108411,108414,108415,108416,108417,108418,108419,\
				108422,108423,108425,108426,108427,108428,108429,\
				108430,108431,108432,108433,108434,108435,108436,108437,108438,108440,\
				108441,108442,108443,108444,108459,108460,108461,\
				108512,108513,108514,108515,108516,108517,108518,108519,\
				108520,108523,108524,108525,108526,108527,\
				108535,108536,108537,108538,108539,108548,108559,108565,-1};


	Int_t runlist_E[]={108393,108392,108391,108390,108389,108388,108387,108495,108494,108493,108492,108491,-1};

	//Int_t runlist_Au[]={108339,108340,108342,108343,108344,108345,108346,108403,108404,108405,108490,108489,-1};



	TTOFSort *a = new TTOFSort();
	 a->SetEnableMonitorPerBunch(); // include information on monitors per bunch


	a->AddDetector(kC6D6, 6);
	a->AddDetector(kSILI,4);
	a->AddDetector(kPKUP,1);
	a->SetNewVariableNames_amplitude(kC6D6, "amp");   // use instead of variable amp
	a->SetNewVariableNames_amplitude(kSILI ,"amp");
	a->SetNewVariableNames_amplitude(kPKUP ,"amp");

	//a->SetPriorCut(kC6D6,"PulseIntensity>5E12"); a->SetPriorCut(kC6D6,"PulseIntensity>2E12",&&,"PulseIntensity<5E12");
	a->SetPriorCut(kC6D6,"PulseIntensity>5E12");
	a->SetPriorCut(kSILI,"PulseIntensity>5E12");
	a->SetPriorCut(kPKUP,"PulseIntensity>5E12");


		a->SetNewBinParsA(kC6D6, 0.0, 7000, 70000);        // CLW: CHANGED BINNING
		a->SetNewBinParsA(kSILI, 0.0, 7000, 70000);        // CLW: CHANGED BINNING

		 a->SetNewVariableNames_amplitude(kC6D6, "amp");

		 a->SetNewFixedDeadtime(kC6D6, 50.0);    // fixed deadtime of 30 ns
		 a->SetNewCoincidencetime (kC6D6, 40.0); // Coincidences between 30 ns



	a->UseWeightingFunction(kC6D6, wfzn1, wfzn2, wfzn3, wfzn4); //Zero the additonal two C6D6s

	a->UseCalibration(kC6D6, caldet1, caldet2, caldet3, caldet4);
	a->SetNewCutsEg(kC6D6, 0.200, 10.0);

	a->ProcessListOfRuns_Single(prefix, runlist_Zn, suffix, "Zn_single_ALL_dedicated.root", "Zn", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_E, suffix, "Zn_single_ALL_dedicated.root", "E", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_Zn, suffix, "Zn_sum_ALL_dedicated.root", "Zn", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_E, suffix, "Zn_sum_ALL_dedicated.root", "E", "UPDATE");

	return 0;
}
Attachment 5: Process_Zn_inc_prob_parasitic.C
// g++ -Wall -O3 -g `root-config --cflags --ldflags --glibs` process_runs_Zn_full.cpp -o process_runs_Zn_full && ./process_runs_Zn_full

#include <iostream>
#include <TFile.h>
#include <TCanvas.h>
#include <TPad.h>
#include <TAxis.h>
#include <TH1D.h>
#include <TF1.h>
#include <TLegend.h>
#include <TLegendEntry.h>
#include <TDirectory.h>
#include <fstream>
#include <math.h>

#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.h"
#ifndef __CINT__
#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.cxx"
#endif

using namespace std;

Double_t caldet1(Double_t x){return(-0.0126844 + 0.000250511 * x);}
//Double_t caldet1b(Double_t x){return(0.0300862 + 0.000239789 * x);}
//Double_t caldet1c(Double_t x){return(-0.00982159 + 0.000243208 * x);}
Double_t caldet2(Double_t x){return(0.00933879 + 0.000223045 * x);}
Double_t caldet3(Double_t x){return(0.0448306 + 0.000295976 * x);}
Double_t caldet4(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet5(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet6(Double_t x){return(0.039253 + 0.000228249 * x);}

Double_t wfzn1(Double_t x){return(52.4331 - 15.7227 * x + 129.696 * x * x - 21.3173 * x * x * x + 1.23419 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn2(Double_t x){return(54.8656 - 23.9266 * x + 136.114 * x * x - 22.9382 * x * x * x + 1.36142 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn3(Double_t x){return(55.0448 - 24.1592 * x + 135.662 * x * x - 22.6676 * x * x * x + 1.32807 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn4(Double_t x){return(53.7253 - 20.1490 * x + 133.263 * x * x - 22.2370 * x * x * x + 1.30748 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t wfau1(Double_t x){return(33.0459 - 14.2600 * x + 79.6741 * x * x - 12.5454 * x * x * x + 75.7094 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau2(Double_t x){return(31.1978 - 8.63083 * x + 76.0325 * x * x - 11.7987 * x * x * x + 71.1593 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau3(Double_t x){return(30.1989 - 5.58729 * x + 74.0714 * x * x - 11.4009 * x * x * x + 68.8028 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau4(Double_t x){return(30.0116 - 5.09782 * x + 73.9204 * x * x - 11.4115 * x * x * x + 69.3298 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t dummy_function(Double_t x){return 0.;}

int Zn68(){

	Char_t prefix[] = "root://eospublic.cern.ch//eos/experiment/ntof/data/rootfiles/2018/ear1/run";

	Char_t suffix[] = ".root";


	Int_t runlist_Zn[]={108347,108348,108349,108350,108351,108352,108353,108355,108357,108359,108360,108361,108362,\
				108363,108364,108397,108398,108399,108400,108406,108408,\
				108409,108410,108411,108414,108415,108416,108417,108418,108419,\
				108422,108423,108425,108426,108427,108428,108429,\
				108430,108431,108432,108433,108434,108435,108436,108437,108438,108440,\
				108441,108442,108443,108444,108459,108460,108461,\
				108512,108513,108514,108515,108516,108517,108518,108519,\
				108520,108523,108524,108525,108526,108527,\
				108535,108536,108537,108538,108539,108548,108559,108565,-1};



	Int_t runlist_E[]={108393,108392,108391,108390,108389,108388,108387,108495,108494,108493,108492,108491,-1};

	//Int_t runlist_Au[]={108339,108340,108342,108343,108344,108345,108346,108403,108404,108405,108490,108489,-1};

	TTOFSort *a = new TTOFSort();
	 a->SetEnableMonitorPerBunch(); // include information on monitors per bunch


	a->AddDetector(kC6D6, 6);
	a->AddDetector(kSILI,4);
	a->AddDetector(kPKUP,1);
	a->SetNewVariableNames_amplitude(kC6D6, "amp");   // use instead of variable amp
	a->SetNewVariableNames_amplitude(kSILI ,"amp");
	a->SetNewVariableNames_amplitude(kPKUP ,"amp");

	//a->SetPriorCut(kC6D6,"PulseIntensity>5E12"); a->SetPriorCut(kC6D6,"PulseIntensity>2E12",&&,"PulseIntensity<5E12");
	a->SetPriorCut(kC6D6,"PulseIntensity>2E12 && PulseIntensity<5E12");
	//a->SetPriorCut(kC6D6,"PulseIntensity>5E12 && detn!=1 && detn!=4");
	a->SetPriorCut(kSILI,"PulseIntensity>2E12 && PulseIntensity<5E12");
	a->SetPriorCut(kPKUP,"PulseIntensity>2E12 && PulseIntensity<5E12");


		a->SetNewBinParsA(kC6D6, 0.0, 7000, 70000);        // CLW: CHANGED BINNING
		a->SetNewBinParsA(kSILI, 0.0, 7000, 70000);        // CLW: CHANGED BINNING

		 a->SetNewVariableNames_amplitude(kC6D6, "amp");

		 a->SetNewFixedDeadtime(kC6D6, 50.0);    // fixed deadtime of 30 ns
		 a->SetNewCoincidencetime (kC6D6, 40.0); // Coincidences between 30 ns



	a->UseWeightingFunction(kC6D6, wfzn1, wfzn2, wfzn3, wfzn4); //Zero the additonal two C6D6s

	a->UseCalibration(kC6D6, caldet1, caldet2, caldet3, caldet4);
	a->SetNewCutsEg(kC6D6, 0.200, 10.0);

	a->ProcessListOfRuns_Single(prefix, runlist_Zn, suffix, "Zn_single_ALL_parasitic.root", "Zn", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_E, suffix, "Zn_single_ALL_parasitic.root", "E", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_Zn, suffix, "Zn_sum_ALL_parasitic.root", "Zn", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_E, suffix, "Zn_sum_ALL_parasitic.root", "E", "UPDATE");

	return 0;
}
Attachment 6: Process_Zn_inc_prob.C
// g++ -Wall -O3 -g `root-config --cflags --ldflags --glibs` process_runs_Zn_full.cpp -o process_runs_Zn_full && ./process_runs_Zn_full

#include <iostream>
#include <TFile.h>
#include <TCanvas.h>
#include <TPad.h>
#include <TAxis.h>
#include <TH1D.h>
#include <TF1.h>
#include <TLegend.h>
#include <TLegendEntry.h>
#include <TDirectory.h>
#include <fstream>
#include <math.h>

#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.h"
#ifndef __CINT__
#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.cxx"
#endif

using namespace std;

Double_t caldet1(Double_t x){return(-0.0126844 + 0.000250511 * x);}
//Double_t caldet1b(Double_t x){return(0.0300862 + 0.000239789 * x);}
//Double_t caldet1c(Double_t x){return(-0.00982159 + 0.000243208 * x);}
Double_t caldet2(Double_t x){return(0.00933879 + 0.000223045 * x);}
Double_t caldet3(Double_t x){return(0.0448306 + 0.000295976 * x);}
Double_t caldet4(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet5(Double_t x){return(0.039253 + 0.000228249 * x);}
Double_t caldet6(Double_t x){return(0.039253 + 0.000228249 * x);}

Double_t wfzn1(Double_t x){return(52.4331 - 15.7227 * x + 129.696 * x * x - 21.3173 * x * x * x + 1.23419 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn2(Double_t x){return(54.8656 - 23.9266 * x + 136.114 * x * x - 22.9382 * x * x * x + 1.36142 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn3(Double_t x){return(55.0448 - 24.1592 * x + 135.662 * x * x - 22.6676 * x * x * x + 1.32807 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfzn4(Double_t x){return(53.7253 - 20.1490 * x + 133.263 * x * x - 22.2370 * x * x * x + 1.30748 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t wfau1(Double_t x){return(33.0459 - 14.2600 * x + 79.6741 * x * x - 12.5454 * x * x * x + 75.7094 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau2(Double_t x){return(31.1978 - 8.63083 * x + 76.0325 * x * x - 11.7987 * x * x * x + 71.1593 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau3(Double_t x){return(30.1989 - 5.58729 * x + 74.0714 * x * x - 11.4009 * x * x * x + 68.8028 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0
Double_t wfau4(Double_t x){return(30.0116 - 5.09782 * x + 73.9204 * x * x - 11.4115 * x * x * x + 69.3298 * x * x * x * x);} //Coeff 0.0810697 0.0604489 0

Double_t dummy_function(Double_t x){return 0.;}

int Zn68(){

	Char_t prefix[] = "root://eospublic.cern.ch//eos/experiment/ntof/data/rootfiles/2018/ear1/run";

	Char_t suffix[] = ".root";

	Int_t runlist_Zn[]{108347,108348,108349,108350,108351,108352,108353,108355,108357,108359,108360,108361,108362,\
				108363,108364,108397,108398,108399,108400,108406,108408,\
				108409,108410,108411,108414,108415,108416,108417,108418,108419,\
				108422,108423,108425,108426,108427,108428,108429,\
				108430,108431,108432,108433,108434,108435,108436,108437,108438,108440,\
				108441,108442,108443,108444,108459,108460,108461,\
				108512,108513,108514,108515,108516,108517,108518,108519,\
				108520,108523,108524,108525,108526,108527,\
				108535,108536,108537,108538,108539,108548,108559,108565,-1};


	Int_t runlist_E[]={108393,108392,108391,108390,108389,108388,108387,108495,108494,108493,108492,108491,-1};

	//Int_t runlist_Au[]={108339,108340,108342,108343,108344,108345,108346,108403,108404,108405,108490,108489,-1};



	TTOFSort *a = new TTOFSort();
	 a->SetEnableMonitorPerBunch(); // include information on monitors per bunch


	a->AddDetector(kC6D6, 6);
	a->AddDetector(kSILI,4);
	a->AddDetector(kPKUP,1);
	a->SetNewVariableNames_amplitude(kC6D6, "amp");   // use instead of variable amp
	a->SetNewVariableNames_amplitude(kSILI ,"amp");
	a->SetNewVariableNames_amplitude(kPKUP ,"amp");

	//a->SetPriorCut(kC6D6,"PulseIntensity>5E12"); a->SetPriorCut(kC6D6,"PulseIntensity>2E12",&&,"PulseIntensity<5E12");
	//a->SetPriorCut(kC6D6);
	//a->SetPriorCut(kSILI);
	//a->SetPriorCut(kPKUP);


		a->SetNewBinParsA(kC6D6, 0.0, 7000, 70000);        // CLW: CHANGED BINNING
		a->SetNewBinParsA(kSILI, 0.0, 7000, 70000);        // CLW: CHANGED BINNING

		 a->SetNewVariableNames_amplitude(kC6D6, "amp");

		 a->SetNewFixedDeadtime(kC6D6, 50.0);    // fixed deadtime of 30 ns
		 a->SetNewCoincidencetime (kC6D6, 40.0); // Coincidences between 30 ns



	a->UseWeightingFunction(kC6D6, wfzn1, wfzn2, wfzn3, wfzn4); //Zero the additonal two C6D6s

	a->UseCalibration(kC6D6, caldet1, caldet2, caldet3, caldet4);
	a->SetNewCutsEg(kC6D6, 0.200, 10.0);

	a->ProcessListOfRuns_Single(prefix, runlist_Zn, suffix, "Zn_single_ALL.root", "Zn", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_E, suffix, "Zn_single_ALL.root", "E", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_Zn, suffix, "Zn_sum_ALL.root", "Zn", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_E, suffix, "Zn_sum_ALL.root", "E", "UPDATE");

	return 0;
}
  54   Tue Nov 7 13:21:51 2023 Emma WalkerSi-30: Comparison between background corrected and uncorrected

Below are graphs for the comparison between background corrected and uncorrected spectra (weighted) for Si-30, Au20, Au22 and Sinatgood.

This is just for C6D6 detector 1 but all detectors are consisitent. All histograms have been rebinned by 100 for clarity. 

Attachment 1: Comp_backgroundsub_Si_1.pdf
Comp_backgroundsub_Si_1.pdf
Attachment 2: Comp_backgroundsub_Au20_1.pdf
Comp_backgroundsub_Au20_1.pdf
Attachment 3: Comp_backgroundsub_Au22_1.pdf
Comp_backgroundsub_Au22_1.pdf
Attachment 4: Comp_backgroundsub_Sinatgood_1.pdf
Comp_backgroundsub_Sinatgood_1.pdf
  53   Mon Nov 6 11:13:11 2023 Emma WalkerComparison of empty, ambient and sample- Si-30

Below are graphs for each sample (weighted) showing the comparison between ambient spectra, empty/dummy holder and sample spectra. 

All four detectors are shown for each sample (Si-30, Au20, Au22, Sinatgood). 

All histograms have been rebinned by 50. 

Attachment 1: Si-30_Background_comp_1.png
Si-30_Background_comp_1.png
Attachment 2: Si-30_Background_comp_2.png
Si-30_Background_comp_2.png
Attachment 3: Si-30_Background_comp_3.png
Si-30_Background_comp_3.png
Attachment 4: Si-30_Background_comp_4.png
Si-30_Background_comp_4.png
Attachment 5: Au20_Background_comp_1.png
Au20_Background_comp_1.png
Attachment 6: Au20_Background_comp_2.png
Au20_Background_comp_2.png
Attachment 7: Au20_Background_comp_3.png
Au20_Background_comp_3.png
Attachment 8: Au20_Background_comp_4.png
Au20_Background_comp_4.png
Attachment 9: Au22_Background_comp_1.png
Au22_Background_comp_1.png
Attachment 10: Au22_Background_comp_2.png
Au22_Background_comp_2.png
Attachment 11: Au22_Background_comp_3.png
Au22_Background_comp_3.png
Attachment 12: Au22_Background_comp_4.png
Au22_Background_comp_4.png
Attachment 13: Sinatgood_Background_comp_1.png
Sinatgood_Background_comp_1.png
Attachment 14: Sinatgood_Background_comp_2.png
Sinatgood_Background_comp_2.png
Attachment 15: Sinatgood_Background_comp_3.png
Sinatgood_Background_comp_3.png
Attachment 16: Sinatgood_Background_comp_4.png
Sinatgood_Background_comp_4.png
  52   Fri Oct 27 17:13:58 2023 Emma WalkerSi-30: Dedicated vs Parasitic before and after removal of ambient

Below are histograms for the weighted spectra (with deadtime correction) with and without ambient for C6D6 detector 1.

For each sample the histogram with ambient is first and then without ambient (please ignore histogram titles). 

The Dummy, Empty and C-nat have been rebined by combining 100 to 1.

The Au20, Au22, Si-30 and Sinatgood have been rebined by combining 10 to 1.

Si-30 WF used for: Si-30, Dummy, Empty, C-nat

Au20 WF used for: Au20

Au22 WF used for: Au22

Sinatgood WF used for: Sinatgood

Attachment 1: DvsP_1_rebin.pdf
DvsP_1_rebin.pdf
Attachment 2: DvsP_1_amb.pdf
DvsP_1_amb.pdf
Attachment 3: DvsP_1_dummy.pdf
DvsP_1_dummy.pdf
Attachment 4: DvsP_1_dummyamb.pdf
DvsP_1_dummyamb.pdf
Attachment 5: DvsP_1_empty.pdf
DvsP_1_empty.pdf
Attachment 6: DvsP_1_emptyamb.pdf
DvsP_1_emptyamb.pdf
Attachment 7: DvsP_1_C.pdf
DvsP_1_C.pdf
Attachment 8: DvsP_1_Camb.pdf
DvsP_1_Camb.pdf
Attachment 9: DvsP_1_Au20.pdf
DvsP_1_Au20.pdf
Attachment 10: DvsP_1_Au20amb.pdf
DvsP_1_Au20amb.pdf
Attachment 11: DvsP_1_Au22.pdf
DvsP_1_Au22.pdf
Attachment 12: DvsP_1_Au22amb.pdf
DvsP_1_Au22amb.pdf
Attachment 13: DvsP_1_Sinatgood.pdf
DvsP_1_Sinatgood.pdf
Attachment 14: DvsP_1_Sinatgoodamb.pdf
DvsP_1_Sinatgoodamb.pdf
  51   Tue Oct 24 11:29:46 2023 ARWeighted Histograms Vs Deadtime*Corrected: 68Zn
Attachment 1: combined_vs_weighted_parasitic_det3.pdf
combined_vs_weighted_parasitic_det3.pdf
Attachment 2: combined_vs_weighted_parasitic_det2.pdf
combined_vs_weighted_parasitic_det2.pdf
Attachment 3: combined_vs_weighted_parasitic_all_dets.pdf
combined_vs_weighted_parasitic_all_dets.pdf
Attachment 4: combined_vs_weighted_dedicated_det3.pdf
combined_vs_weighted_dedicated_det3.pdf
Attachment 5: combined_vs_weighted_dedicated_det2.pdf
combined_vs_weighted_dedicated_det2.pdf
Attachment 6: combined_vs_weighted_dedicated_all_dets.pdf
combined_vs_weighted_dedicated_all_dets.pdf
Attachment 7: combined_parasitic_all_dets.pdf
combined_parasitic_all_dets.pdf
Attachment 8: corrected_dedicated_both_dets.pdf
corrected_dedicated_both_dets.pdf
Attachment 9: weighted_para_vs_ded_det3.pdf
weighted_para_vs_ded_det3.pdf
Attachment 10: weighted_para_vs_ded_det3_R3.pdf
weighted_para_vs_ded_det3_R3.pdf
Attachment 11: weighted_para_vs_ded_det3_R2.pdf
weighted_para_vs_ded_det3_R2.pdf
Attachment 12: weighted_para_vs_ded_det3_R1.pdf
weighted_para_vs_ded_det3_R1.pdf
Attachment 13: Weighted_para_vs_ded_det2.pdf
Weighted_para_vs_ded_det2.pdf
Attachment 14: weighted_para_vs_ded_det2_R3.pdf
weighted_para_vs_ded_det2_R3.pdf
Attachment 15: weighted_para_vs_ded_det2_R1.pdf
weighted_para_vs_ded_det2_R1.pdf
Attachment 16: weighred_para_vs_ded_det2_R2.pdf
weighred_para_vs_ded_det2_R2.pdf
Attachment 17: corrected_para_vs_ded_det3.pdf
corrected_para_vs_ded_det3.pdf
Attachment 18: corrected_para_vs_ded_det3_R3.pdf
corrected_para_vs_ded_det3_R3.pdf
Attachment 19: corrected_para_vs_ded_det3_R2.pdf
corrected_para_vs_ded_det3_R2.pdf
Attachment 20: corrected_para_vs_ded_det3_R1.pdf
corrected_para_vs_ded_det3_R1.pdf
Attachment 21: corrected_para_vs_ded_det2.pdf
corrected_para_vs_ded_det2.pdf
Attachment 22: corrected_para_vs_ded_det2_R3.pdf
corrected_para_vs_ded_det2_R3.pdf
Attachment 23: corrected_para_vs_ded_det2_R2.pdf
corrected_para_vs_ded_det2_R2.pdf
Attachment 24: corrected_para_vs_ded_det2_R1.pdf
corrected_para_vs_ded_det2_R1.pdf
  50   Mon Oct 23 12:47:16 2023 Emma WalkerSi-30 weighted and corrected spectra and deadtime correction histograms (parasitic)

Si-30:

Histograms for deadtime correction for all 4 C6D6 detectors for parasitic beam.

Histograms for weighted and deadtime corrected parasitic spectra. 

Attachment 1: Si_1_corr_pb.pdf
Si_1_corr_pb.pdf
Attachment 2: Si_2_corr_pb.pdf
Si_2_corr_pb.pdf
Attachment 3: Si_3_corr_pb.pdf
Si_3_corr_pb.pdf
Attachment 4: Si_4_corr_pb.pdf
Si_4_corr_pb.pdf
Attachment 5: Si_1_wcorr_pb.pdf
Si_1_wcorr_pb.pdf
Attachment 6: Si_2_wcorr_pb.pdf
Si_2_wcorr_pb.pdf
Attachment 7: Si_3_wcorr_pb.pdf
Si_3_wcorr_pb.pdf
Attachment 8: Si_4_wcorr_pb.pdf
Si_4_wcorr_pb.pdf
  49   Mon Oct 23 12:39:33 2023 Emma WalkerSi-30 corrected weighted and dead time corrections histograms (dedicated)

Si-30:

Histograms for dead time corrections for all 4 C6D6 detectors.

Histograms for weighted and deadtime corrected dedicated spectra. 

Attachment 1: Si_1_corr_db.pdf
Si_1_corr_db.pdf
Attachment 2: Si_2_corr_db.pdf
Si_2_corr_db.pdf
Attachment 3: Si_3_corr_db.pdf
Si_3_corr_db.pdf
Attachment 4: Si_4_corr_db.pdf
Si_4_corr_db.pdf
Attachment 5: Si_1_wcorr_db.pdf
Si_1_wcorr_db.pdf
Attachment 6: Si_2_wcorr_db.pdf
Si_2_wcorr_db.pdf
Attachment 7: Si_3_wcorr_db.pdf
Si_3_wcorr_db.pdf
Attachment 8: Si_4_wcorr_db.pdf
Si_4_wcorr_db.pdf
  48   Wed Oct 18 12:14:09 2023 Emma WalkerProcessing file for EAR-1 with WF applied, Si-30

Weighting function for Si-30, Au22, Au20 and Sinatgood applied for parasitic and dedicated beams. 

Attachment 1: Weighting_processing.c
/// 23.6.23, 9:30 edit CLW - process also other runlists

// g++ -Wall -O3 -g `root-config --cflags --ldflags --glibs` Process_Si.C -o Process_Si && ./Process_Si

// includes header, and source only in compiled script
#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.h"
#ifndef __CINT__
#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.cxx"
#endif
// --------------------------------------------------------------------------
//
//
//
// --------------------------------------------------------------------------

Double_t a2e_c6d61(Double_t x) {  // from amplitude (channel) to MeV
   return (3.71330E-02+ 2.78468E-04* x );
}
Double_t a2e_c6d62(Double_t x) {  // from amplitude (channel) to MeV
   return (1.21071E-02+ 2.82656E-04* x);
}
Double_t a2e_c6d63(Double_t x) {  // from amplitude (channel) to MeV
   return (2.74746E-02+ 2.64094E-04* x);
}
Double_t a2e_c6d64(Double_t x) {  // from amplitude (channel) to MeV
   return (2.96214E-02+ 2.73633E-04* x );
}

Double_t wf_Si(Double_t x) { //WF for silicon 30
  return (9.65464 - 6.83768 * x + 26.4596 * x * x - 5.02546 * x * x * x + 0.372149 * x * x * x * x);
}

Double_t wf_Sinatgood(Double_t x) { //WF for silicon natural
  return (8.86824 - 1.26346 * x + 18.4828 * x * x - 2.25899 * x * x * x + 0.106017 * x * x * x * x);
}

Double_t wf_Au20(Double_t x) { //WF for 20mm-gold
  return (7.93383 + 1.02633 * x + 16.9180 * x * x - 1.95645 * x * x * x + 0.0918222 * x * x * x * x);
}

Double_t wf_Au22(Double_t x) { //WF for 22mm-gold
  return (7.93673 + 1.00093 * x + 16.9408 * x * x - 1.96542 * x * x * x + 0.0923510 * x * x * x * x);
}

int main() {

    Char_t prefix[] = "/eos/experiment/ntof/processing/official/done/run";
    Char_t suffix[] = ".root";

    Int_t runlist_co[] = {116215, 116216, 116217, 116218, -1};

    Int_t runlist_ba[] = {116208, 116209, 116210, 116211, 116212, 116213, 116214, -1};

    Int_t runlist_mn[] = {116203, 116204, 116205, 116206, 116207, -1};

    Int_t runlist_bi[] = {116193, 116194, -1};

    Int_t runlist_cs[] = {116093, 116159, 116160, 116161, 116296, 116384, 116385,116445,116476,116567 ,-1};

    Int_t runlist_y[] = {116094, 116162, 116163, 116164, 116297, 116298, 116380, 116381, 116382,116446,116475,116568, -1};

    Int_t runlist_ambe[] = {116095, 116096, 116097, 116165, 116166, 116167, 116168, 116169, 116170, 116171, 116172, 116173, 116174, 116299, 116301, 116302, 116375, 116376,116467,116468,116469,116470,116569 ,116570,116571,-1};

    Int_t runlist_cmc[] = {116179, 116180, 116181, 116182, 116183, 116184, 116185, 116186, 116187, 116188, 116189, 116190, 116191, 116192, 116219, 116220, 116221, 116222, 116303, 116304, 116305, 116377,116378, 116379,116447,116448, 116449,116450, 116451,116471,116472,116473,116474, -1};
    
    Int_t runlist_cnat[]={116284, 116285, 116286, 116287, 116288, 116308, 116309, 116310, 116311,
116312,116313,116314,116315,116316,116317,116318,116319,116320, -1};

    Int_t runlist_au20mm[] = {116100, 116101, 116102,116322,116548, -1};

    Int_t runlist_au22mm[] = { 116226, 116227, 116229, 116231, 116232, 116234, 116235, 116321,116507,116508,116509,116510,-1};
    //116225 116505 116506was 'BAD'
    Int_t runlist_amb[] = {116103, 116104, 116106, 116108, 116109, 116110, 116111, 116119, 116120, 116121, 116122, 116123, 116127, 116128, 116129, 116130, 116131, 116132, 116133, 116134, 116135, 116141, 116143, 116154, 116155, 116156, 116157, 116158, 116175, 116176, 116177, 116178,116197, 116198, 116199, 116200, 116201, 116202, 116248, 116249, 116250, 116251, 116252, 116253, 116254, 116255, 116257, 116258, 116259,116374, 116386, 116387, 116388, 116389, 116390, 116391, 116392, 116393,116405,116444,116443,116452,116453,116454,116455,116456,116457,116458,116459,116460,116461,116462,116463,116464,116465,116466,116477,116478,116479,116480,116481,116483,116485,116487,116488,116490,116491,116492,116493,116494,116495,116496,116498,116499,116501,116503,116519,116520,116521,116522, -1};  // no beam and no calibration source

    Int_t runlist_dummy[] = {116237, 116241, 116242, 116243, 116244, 116245, 116246, 116247, 116253, 116260, 116261, 116420, 116421, 116422, 116423, 116424, 116425, 116426, 116427, 116428, 116429, 116430, 116431, 116432, 116433, 116434, 116435, 116436, 116437, 116438,116439,-1};
    //, 116418 too slow 116240 is bad
     Int_t runlist_empty[] = {116323, 116324, 116325,116326,116327,116328, -1};
     
    Int_t runlist_30si[] = {116105, 116112, 116113, 116114, 116115, 116116, 116117, 116118, 116124, 116125, 116126, 116136, 116137, 116138, 116139, 116140, 116142, 116144, 116145, 116146, 116147, 116148, 116149, 116150, 116151, 116152, 116153, 116263, 116264, 116265, 116266, 116268, 116269, 116270, 116271, 116272, 116273, 116274, 116275, 116276, 116277, 116278, 116279, 116280, 116281, 116282, 116283, 116358, 116359, 116360, 116361, 116362, 116363, 116364, 116367, 116368, 116369, 116371, 116372, 116373, 116394, 116395, 116396, 116397, 116398, 116399, 116400, 116401, 116402, 116403, 116404, 116406, 116407, 116408, 116409, 116411, 116412, 116413, 116415,116440,116441,116482,116484,116486,116489,116502,116504, -1};
    //116365, 116466 are empty (should be Si run) , 116370,116442,116414 (116262 this one was 'bad')
    Int_t runlist_sinat[] = {116330, 116331, 116332, 116333, 116335, 116337, 116339, 116341, 116342, 116343, 116344, 116345, 116346, 116347, 116348, 116349, 116350, 116351, 116352, 116353, 116354, 116355, 116356, 116357,116511 ,116512 ,116513 ,116514 ,116517 ,116518 ,116523 ,116524 ,116525 ,116526 ,116527 ,116528  ,116532 ,116533 ,116534 ,116535 ,116536 ,116537 ,116538 ,116539 ,116540 ,116541 ,116542 ,116543 ,116544 ,116545 ,116546 ,-1};
    //bad 116529, 116530,116531
    Int_t runlist_sinat_good[] = { 116549 ,116551 ,116552 ,116553 ,116554 ,116555 ,116556 ,116557 ,116558 ,116559 ,116560 ,116561 ,116562,116563,116564,116565,116566, -1 };
    
    TTOFSort *a = new TTOFSort();

    a->AddDetector(kC6D6, 4);
    
    //a->SetNewBinParsA(kC6D6, 0.0, 6500, 6500000.0);
    a->SetNewBinParsT(kC6D6, -10.0, 2.0, 1e3, 5000, 1e9); //Double the nbins (10k here becomes 20k bpd spec)

    a->PrintSettings();
        
    a->SetNewFixedDeadtime(kC6D6, 30.0);//fixed deadtime of 30 ns
    a->SetNewCoincidencetime(kC6D6, 30.0);//Coincidences between 30 ns
    a->SetNewVariableNames_amplitude(kC6D6, "amp");
    a->SetNewBinParsA(kC6D6, 0.0, 6500, 70000);
    a->SetNewCutsAmp_all(kC6D6, 600, 50000);

    a->UseCalibration(kC6D6, a2e_c6d61, a2e_c6d62, a2e_c6d63, a2e_c6d64);
    a->SetNewCutsEg(kC6D6, 0.200, 8.0, 0.200, 8.0, 0.200, 8.0, 0.200, 8.0);

    a->SetPriorCut(kC6D6, "PulseIntensity<1e7");

    //a->ProcessListOfRuns_Sum(prefix, runlist_co, suffix, "Sum_Cal.root", "Co", "RECREATE");
    //a->ProcessListOfRuns_Sum(prefix, runlist_bi, suffix, "Sum_Cal.root", "Bi", "UPDATE");
    //a->ProcessListOfRuns_Sum(prefix, runlist_ba, suffix, "Sum_Cal.root", "Ba", "UPDATE");
    //a->ProcessListOfRuns_Sum(prefix, runlist_mn, suffix, "Sum_Cal.root", "Mn", "UPDATE");
    //a->ProcessListOfRuns_Sum(prefix, runlist_cs, suffix, "Sum_Cal.root", "Cs", "UPDATE");
    //a->ProcessListOfRuns_Sum(prefix, runlist_y, suffix, "Sum_Cal.root", "Y", "UPDATE");
    //a->ProcessListOfRuns_Sum(prefix, runlist_ambe, suffix, "Sum_Cal.root", "Ambe", "UPDATE");
    //a->ProcessListOfRuns_Sum(prefix, runlist_cmc, suffix, "Sum_Cal.root", "Cmc", "UPDATE");
    //a->ProcessListOfRuns_Sum(prefix, runlist_amb, suffix, "Sum_Amb.root", "Amb", "RECREATE");


    //a->ProcessListOfRuns_Single(prefix, runlist_co, suffix, "Co.root", "Co", "RECREATE");
    //a->ProcessListOfRuns_Single(prefix, runlist_bi, suffix, "Bi.root", "Bi", "RECREATE");
    //a->ProcessListOfRuns_Single(prefix, runlist_ba, suffix, "Ba.root", "Ba", "RECREATE");
    //a->ProcessListOfRuns_Single(prefix, runlist_mn, suffix, "Mn.root", "Mn", "RECREATE");
    //a->ProcessListOfRuns_Single(prefix, runlist_cs, suffix, "Cs.root", "Cs", "RECREATE");
    //a->ProcessListOfRuns_Single(prefix, runlist_y, suffix, "Y.root", "Y", "RECREATE");
    //a->ProcessListOfRuns_Single(prefix, runlist_ambe, suffix, "Ambe.root", "Ambe", "RECREATE");
    //a->ProcessListOfRuns_Single(prefix, runlist_cmc, suffix, "Cmc.root", "Cmc", "RECREATE");
    
    
    a->UseWeightingFunction(kC6D6, wf_Si);
    a->ProcessListOfRuns_Sum(prefix, runlist_amb, suffix, "Amb_sum_SiWF.root", "Amb", "RECREATE");
    a->UseWeightingFunction(kC6D6, wf_Au20);
    a->ProcessListOfRuns_Sum(prefix, runlist_amb, suffix, "Amb_sum_Au20WF.root", "Amb", "RECREATE");
    a->UseWeightingFunction(kC6D6, wf_Au22);
    a->ProcessListOfRuns_Sum(prefix, runlist_amb, suffix, "Amb_sum_Au22WF.root", "Amb", "RECREATE");
    a->UseWeightingFunction(kC6D6, wf_Sinatgood);
    a->ProcessListOfRuns_Sum(prefix, runlist_amb, suffix, "Amb_sum_SinatgoodWF.root", "Amb", "RECREATE");
    
    
    // dedicated >5E12, parasitic 1-5 E12
    //a->SetPriorCut(kC6D6, "PulseIntensity>1e12");
    a->AddDetector(kSILI, 4);
    //a->SetNewBinParsA(kSILI, 0.0, 1e4, 1e5);
    a->SetNewVariableNames_amplitude(kSILI, "amp");
    //a->SetPriorCut(kSILI, "PulseIntensity>1e12");
    a->SetNewBinParsA(kSILI, 0.0, 6500, 70000);
    a->SetNewCutsAmp_all(kSILI, 8000, 40000);
    a->SetNewCutsTime_all(kSILI, 1E4, 1E9);
    a->AddDetector(kPKUP, 1);
    a->SetNewVariableNames_amplitude(kPKUP, "amp");
    a->SetPriorCut(kPKUP,"amp>5000 && amp<50000");
    a->SetNewBinParsA(kPKUP,0.0,6500,70000);
    //a->SetPriorCut(kPKUP, "PulseIntensity>1e12");
    //a->UseWeightingFunction(kC6D6, wf, wf, wf, wf);
    
    a->SetPriorCut(kC6D6, "PulseIntensity>1e+12");
    a->SetPriorCut(kPKUP, "PulseIntensity>1e+12");
    a->SetPriorCut(kSILI, "PulseIntensity>1e+12");

    //For dedicated pulse
    a->SetPriorCut(kC6D6, "PulseIntensity>5e+12");
    a->SetPriorCut(kSILI, "PulseIntensity>5e+12");
    a->SetPriorCut(kPKUP, "PulseIntensity>5e+12");

    a->UseWeightingFunction(kC6D6, wf_Si);
    a->ProcessListOfRuns_Sum(prefix, runlist_30si, suffix, "Dedicated_Si_weighting.root", "Si", "RECREATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Dedicated_Si_weighting.root", "Dummy", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Dedicated_Si_weighting.root", "C", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Dedicated_Si_weighting.root", "E", "UPDATE");
    
    a->UseWeightingFunction(kC6D6, wf_Au20);
    a->ProcessListOfRuns_Sum(prefix, runlist_au20mm, suffix, "Dedicated_Au20_weighting.root", "Au20", "RECREATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Dedicated_Au20_weighting.root", "Dummy", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Dedicated_Au20_weighting.root", "C", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Dedicated_Au20_weighting.root", "E", "UPDATE");
    
    a->UseWeightingFunction(kC6D6, wf_Au22);
    a->ProcessListOfRuns_Sum(prefix, runlist_au22mm, suffix, "Dedicated_Au22_weighting.root", "Au22", "RECREATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Dedicated_Au22_weighting.root", "Dummy", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Dedicated_Au22_weighting.root", "C", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Dedicated_Au22_weighting.root", "E", "UPDATE");
    
    a->UseWeightingFunction(kC6D6, wf_Sinatgood);
    a->ProcessListOfRuns_Sum(prefix, runlist_sinat_good, suffix, "Dedicated_Sinatgood_weighting.root", "Sinatgood", "RECREATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Dedicated_Sinatgood_weighting.root", "Dummy", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Dedicated_Sinatgood_weighting.root", "C", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Dedicated_Sinatgood_weighting.root", "E", "UPDATE");
    
    //For parastic pulse
    a->SetPriorCut(kC6D6, "PulseIntensity>1e+12 && PulseIntensity<5e+12");
    a->SetPriorCut(kSILI, "PulseIntensity>1e+12 && PulseIntensity<5e+12");
    a->SetPriorCut(kPKUP, "PulseIntensity>1e+12 && PulseIntensity<5e+12");

    a->UseWeightingFunction(kC6D6, wf_Si);
    a->ProcessListOfRuns_Sum(prefix, runlist_30si, suffix, "Parasitic_Si_weighting.root", "Si", "RECREATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Parasitic_Si_weighting.root", "Dummy", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Parasitic_Si_weighting.root", "C", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Parasitic_Si_weighting.root", "E", "UPDATE");
    
    a->UseWeightingFunction(kC6D6, wf_Au20);
    a->ProcessListOfRuns_Sum(prefix, runlist_au20mm, suffix, "Parasitic_Au20_weighting.root", "Au20", "RECREATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Parasitic_Au20_weighting.root", "Dummy", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Parasitic_Au20_weighting.root", "C", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Parasitic_Au20_weighting.root", "E", "UPDATE");
    
    a->UseWeightingFunction(kC6D6, wf_Au22);
    a->ProcessListOfRuns_Sum(prefix, runlist_au22mm, suffix, "Parasitic_Au22_weighting.root", "Au22", "RECREATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Parasitic_Au22_weighting.root", "Dummy", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Parasitic_Au22_weighting.root", "C", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Parasitic_Au22_weighting.root", "E", "UPDATE");
    
    a->UseWeightingFunction(kC6D6, wf_Sinatgood);
    a->ProcessListOfRuns_Sum(prefix, runlist_sinat_good, suffix, "Parasitic_Sinatgood_weighting.root", "Sinatgood", "RECREATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Parasitic_Sinatgood_weighting.root", "Dummy", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Parasitic_Sinatgood_weighting.root", "C", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Parasitic_Sinatgood_weighting.root", "E", "UPDATE");

    /*
    //For total pulse
    a->ProcessListOfRuns_Sum(prefix, runlist_30si, suffix, "Sum_Beam.root", "Si", "RECREATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_au20mm, suffix, "Sum_Beam.root", "Au20", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_au22mm, suffix, "Sum_Beam.root", "Au22", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Sum_Beam.root", "Dummy", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Sum_Beam.root", "C", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Sum_Beam.root", "E", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_sinat, suffix, "Sum_Beam.root", "Sinat", "UPDATE");
    a->ProcessListOfRuns_Sum(prefix, runlist_sinat_good, suffix, "Beam.root", "Sinatgood", "UPDATE");

    a->ProcessListOfRuns_Single(prefix, runlist_30si, suffix, "Single_30Si.root", "Si", "RECREATE");
    a->ProcessListOfRuns_Single(prefix, runlist_au20mm, suffix, "Single_Au20.root", "Au20", "RECREATE");
    a->ProcessListOfRuns_Single(prefix, runlist_au22mm, suffix, "Single_Au22.root", "Au22", "RECREATE");
    a->ProcessListOfRuns_Single(prefix, runlist_dummy, suffix, "Single_Dummy.root", "Dummy", "RECREATE");
    a->ProcessListOfRuns_Single(prefix, runlist_cnat, suffix, "Single_C.root", "C", "RECREATE");
    a->ProcessListOfRuns_Single(prefix, runlist_empty, suffix, "Single_E.root", "E", "RECREATE");
    a->ProcessListOfRuns_Single(prefix, runlist_sinat, suffix, "Single_Sinat.root", "Sinat", "RECREATE");
    a->ProcessListOfRuns_Single(prefix, runlist_sinat_good, suffix, "Single_Sinatgood.root", "Sinatgood", "RECREATE");
    */
    
    /*
    a->SetPriorCut(kC6D6, "PulseIntensity>1e12");
    a->SetPriorCut(kC6D6, "tflash>10000");

    a->SetTgWindow(kC6D6,10000,15000);
    
    
    a->SetNewCutsAmp_all(kC6D6, 1800, 50000);
    a->ProcessListOfRuns_Sum(prefix, runlist_30si, suffix, "Sum_30Si_hithresh.root", "Si", "RECREATE");
    */
    return 0;
}
  47   Wed Aug 30 12:08:45 2023 Michael DonnachieProcessing files

Here are the Processing files for EAR1 and EAR2 with calibrations.

Attachment 1: Process_Si_beam.C
/// 23.6.23, 9:30 edit CLW - process also other runlists

// g++ -Wall -O3 -g `root-config --cflags --ldflags --glibs` Process_Si.C -o Process_Si && ./Process_Si

// includes header, and source only in compiled script
#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.h"
#ifndef __CINT__
#include "/eos/experiment/ntof/codes/TTOFSort/TTOFSort_nTOF.cxx"
#endif
// --------------------------------------------------------------------------
//
//
//
// --------------------------------------------------------------------------	

Double_t a2e_c6d61(Double_t x) {  // from amplitude (channel) to MeV
   return (3.71330E-02+ 2.78468E-04* x );
}
Double_t a2e_c6d62(Double_t x) {  // from amplitude (channel) to MeV
   return (1.21071E-02+ 2.82656E-04* x);
}
Double_t a2e_c6d63(Double_t x) {  // from amplitude (channel) to MeV
   return (2.74746E-02+ 2.64094E-04* x);
}
Double_t a2e_c6d64(Double_t x) {  // from amplitude (channel) to MeV
   return (2.96214E-02+ 2.73633E-04* x );
}

Double_t wf(Double_t x) {
  return (0.468282 + 36.0785 * x + 9.54532 * x * x + 0.202353 * x * x * x - 0.0352043 * x * x * x * x);
}

int main() {

	Char_t prefix[] = "/eos/experiment/ntof/processing/official/done/run";
	Char_t suffix[] = ".root";

	Int_t runlist_co[] = {116215, 116216, 116217, 116218, -1};

	Int_t runlist_ba[] = {116208, 116209, 116210, 116211, 116212, 116213, 116214, -1};

	Int_t runlist_mn[] = {116203, 116204, 116205, 116206, 116207, -1};

	Int_t runlist_bi[] = {116193, 116194, -1};

	Int_t runlist_cs[] = {116093, 116159, 116160, 116161, 116296, 116384, 116385,116445,116476,116567 ,-1};

	Int_t runlist_y[] = {116094, 116162, 116163, 116164, 116297, 116298, 116380, 116381, 116382,116446,116475,116568, -1};

	Int_t runlist_ambe[] = {116095, 116096, 116097, 116165, 116166, 116167, 116168, 116169, 116170, 116171, 116172, 116173, 116174, 116299, 116301, 116302, 116375, 116376,116467,116468,116469,116470,116569 ,116570,116571,-1};

	Int_t runlist_cmc[] = {116179, 116180, 116181, 116182, 116183, 116184, 116185, 116186, 116187, 116188, 116189, 116190, 116191, 116192, 116219, 116220, 116221, 116222, 116303, 116304, 116305, 116377,116378, 116379,116447,116448, 116449,116450, 116451,116471,116472,116473,116474, -1};
	
	Int_t runlist_cnat[]={116284, 116285, 116286, 116287, 116288, 116308, 116309, 116310, 116311, 
116312,116313,116314,116315,116316,116317,116318,116319,116320, -1};

	Int_t runlist_au20mm[] = {116100, 116101, 116102,116322,116548, -1};

	Int_t runlist_au22mm[] = { 116226, 116227, 116229, 116231, 116232, 116234, 116235, 116321,116507,116508,116509,116510,-1};
	//116225 116505 116506was 'BAD'
	Int_t runlist_amb[] = {116103, 116104, 116106, 116108, 116109, 116110, 116111, 116119, 116120, 116121, 116122, 116123, 116127, 116128, 116129, 116130, 116131, 116132, 116133, 116134, 116135, 116141, 116143, 116154, 116155, 116156, 116157, 116158, 116175, 116176, 116177, 116178,116197, 116198, 116199, 116200, 116201, 116202, 116248, 116249, 116250, 116251, 116252, 116253, 116254, 116255, 116257, 116258, 116259,116374, 116386, 116387, 116388, 116389, 116390, 116391, 116392, 116393,116405,116444,116443,116452,116453,116454,116455,116456,116457,116458,116459,116460,116461,116462,116463,116464,116465,116466,116477,116478,116479,116480,116481,116483,116485,116487,116488,116490,116491,116492,116493,116494,116495,116496,116498,116499,116501,116503,116519,116520,116521,116522, -1};  // no beam and no calibration source

	Int_t runlist_dummy[] = {116237, 116241, 116242, 116243, 116244, 116245, 116246, 116247, 116253, 116260, 116261, 116420, 116421, 116422, 116423, 116424, 116425, 116426, 116427, 116428, 116429, 116430, 116431, 116432, 116433, 116434, 116435, 116436, 116437, 116438,116439,-1};
	//, 116418 too slow 116240 is bad 
	 Int_t runlist_empty[] = {116323, 116324, 116325,116326,116327,116328, -1};
	 
	Int_t runlist_30si[] = {116105, 116112, 116113, 116114, 116115, 116116, 116117, 116118, 116124, 116125, 116126, 116136, 116137, 116138, 116139, 116140, 116142, 116144, 116145, 116146, 116147, 116148, 116149, 116150, 116151, 116152, 116153, 116263, 116264, 116265, 116266, 116268, 116269, 116270, 116271, 116272, 116273, 116274, 116275, 116276, 116277, 116278, 116279, 116280, 116281, 116282, 116283, 116358, 116359, 116360, 116361, 116362, 116363, 116364, 116367, 116368, 116369, 116371, 116372, 116373, 116394, 116395, 116396, 116397, 116398, 116399, 116400, 116401, 116402, 116403, 116404, 116406, 116407, 116408, 116409, 116411, 116412, 116413, 116415,116440,116441,116482,116484,116486,116489,116502,116504, -1};
	//116365, 116466 are empty (should be Si run) , 116370,116442,116414 (116262 this one was 'bad')
	Int_t runlist_sinat[] = {116330, 116331, 116332, 116333, 116335, 116337, 116339, 116341, 116342, 116343, 116344, 116345, 116346, 116347, 116348, 116349, 116350, 116351, 116352, 116353, 116354, 116355, 116356, 116357,116511 ,116512 ,116513 ,116514 ,116517 ,116518 ,116523 ,116524 ,116525 ,116526 ,116527 ,116528  ,116532 ,116533 ,116534 ,116535 ,116536 ,116537 ,116538 ,116539 ,116540 ,116541 ,116542 ,116543 ,116544 ,116545 ,116546 ,-1};
	//bad 116529, 116530,116531
	Int_t runlist_sinat_good[] = { 116549 ,116551 ,116552 ,116553 ,116554 ,116555 ,116556 ,116557 ,116558 ,116559 ,116560 ,116561 ,116562,116563,116564,116565,116566, -1 };
	
	TTOFSort *a = new TTOFSort();

	a->AddDetector(kC6D6, 4);
	
	//a->SetNewBinParsA(kC6D6, 0.0, 6500, 6500000.0);
	a->SetNewBinParsT(kC6D6, -10.0, 2.0, 1e3, 5000, 1e9); //Double the nbins (10k here becomes 20k bpd spec)

	a->PrintSettings();
		
	a->SetNewFixedDeadtime(kC6D6, 30.0);//fixed deadtime of 30 ns
	a->SetNewCoincidencetime(kC6D6, 30.0);//Coincidences between 30 ns
	a->SetNewVariableNames_amplitude(kC6D6, "amp");
	a->SetNewBinParsA(kC6D6, 0.0, 6500, 70000);
	a->SetNewCutsAmp_all(kC6D6, 600, 50000);

	a->UseCalibration(kC6D6, a2e_c6d61, a2e_c6d62, a2e_c6d63, a2e_c6d64);
	a->SetNewCutsEg(kC6D6, 0.200, 8.0, 0.200, 8.0, 0.200, 8.0, 0.200, 8.0); 

	a->SetPriorCut(kC6D6, "PulseIntensity<1e7"); 

	//a->ProcessListOfRuns_Sum(prefix, runlist_co, suffix, "Sum_Cal.root", "Co", "RECREATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_bi, suffix, "Sum_Cal.root", "Bi", "UPDATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_ba, suffix, "Sum_Cal.root", "Ba", "UPDATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_mn, suffix, "Sum_Cal.root", "Mn", "UPDATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_cs, suffix, "Sum_Cal.root", "Cs", "UPDATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_y, suffix, "Sum_Cal.root", "Y", "UPDATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_ambe, suffix, "Sum_Cal.root", "Ambe", "UPDATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_cmc, suffix, "Sum_Cal.root", "Cmc", "UPDATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_amb, suffix, "Sum_Amb.root", "Amb", "RECREATE");


	//a->ProcessListOfRuns_Single(prefix, runlist_co, suffix, "Co.root", "Co", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_bi, suffix, "Bi.root", "Bi", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_ba, suffix, "Ba.root", "Ba", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_mn, suffix, "Mn.root", "Mn", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_cs, suffix, "Cs.root", "Cs", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_y, suffix, "Y.root", "Y", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_ambe, suffix, "Ambe.root", "Ambe", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_cmc, suffix, "Cmc.root", "Cmc", "RECREATE");
    
    

	a->ProcessListOfRuns_Single(prefix, runlist_amb, suffix, "Amb.root", "Amb", "RECREATE");
    
    
	// dedicated >5E12, parasitic 1-5 E12
	//a->SetPriorCut(kC6D6, "PulseIntensity>1e12");
	a->AddDetector(kSILI, 4);
	//a->SetNewBinParsA(kSILI, 0.0, 1e4, 1e5);
	a->SetNewVariableNames_amplitude(kSILI, "amp");
	//a->SetPriorCut(kSILI, "PulseIntensity>1e12"); 
	a->SetNewBinParsA(kSILI, 0.0, 6500, 70000);
	a->SetNewCutsAmp_all(kSILI, 8000, 40000);
	a->SetNewCutsTime_all(kSILI, 1E4, 1E9);
	a->AddDetector(kPKUP, 1);
	a->SetNewVariableNames_amplitude(kPKUP, "amp");
    a->SetPriorCut(kPKUP,"amp>5000 && amp<50000");
    a->SetNewBinParsA(kPKUP,0.0,6500,70000);
	//a->SetPriorCut(kPKUP, "PulseIntensity>1e12");
	//a->UseWeightingFunction(kC6D6, wf, wf, wf, wf);
	
	a->SetPriorCut(kC6D6, "PulseIntensity>1e+12");
	a->SetPriorCut(kPKUP, "PulseIntensity>1e+12");
	a->SetPriorCut(kSILI, "PulseIntensity>1e+12");

	//For dedicated pulse
	a->SetPriorCut(kC6D6, "PulseIntensity>5e+12");
	a->SetPriorCut(kSILI, "PulseIntensity>5e+12");
	a->SetPriorCut(kPKUP, "PulseIntensity>5e+12"); 


	a->ProcessListOfRuns_Sum(prefix, runlist_30si, suffix, "Dedicated_Sum_Beam.root", "Si", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_au20mm, suffix, "Dedicated_Sum_Beam.root", "Au20", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_au22mm, suffix, "Dedicated_Sum_Beam.root", "Au22", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Dedicated_Sum_Beam.root", "Dummy", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Dedicated_Sum_Beam.root", "C", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Dedicated_Sum_Beam.root", "E", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_sinat, suffix, "Dedicated_Sum_Beam.root", "Sinat", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_sinat_good, suffix, "Dedicated_Sum_Beam.root", "Sinatgood", "UPDATE");
    
	//For parastic pulse
	a->SetPriorCut(kC6D6, "PulseIntensity>1e+12 && PulseIntensity<5e+12");
	a->SetPriorCut(kSILI, "PulseIntensity>1e+12 && PulseIntensity<5e+12");
	a->SetPriorCut(kPKUP, "PulseIntensity>1e+12 && PulseIntensity<5e+12");

	a->ProcessListOfRuns_Sum(prefix, runlist_30si, suffix, "Parasitic_Sum_Beam.root", "Si", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_au20mm, suffix, "Parasitic_Sum_Beam.root", "Au20", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_au22mm, suffix, "Parasitic_Sum_Beam.root", "Au22", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Parasitic_Sum_Beam.root", "Dummy", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Parasitic_Sum_Beam.root", "C", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Parasitic_Sum_Beam.root", "E", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_sinat, suffix, "Parasitic_Sum_Beam.root", "Sinat", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_sinat_good, suffix, "Parasitic_Beam.root", "Sinatgood", "UPDATE");


	//For total pulse
	a->ProcessListOfRuns_Sum(prefix, runlist_30si, suffix, "Sum_Beam.root", "Si", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_au20mm, suffix, "Sum_Beam.root", "Au20", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_au22mm, suffix, "Sum_Beam.root", "Au22", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "Sum_Beam.root", "Dummy", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_cnat, suffix, "Sum_Beam.root", "C", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_empty, suffix, "Sum_Beam.root", "E", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_sinat, suffix, "Sum_Beam.root", "Sinat", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_sinat_good, suffix, "Beam.root", "Sinatgood", "UPDATE");

	a->ProcessListOfRuns_Single(prefix, runlist_30si, suffix, "Single_30Si.root", "Si", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_au20mm, suffix, "Single_Au20.root", "Au20", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_au22mm, suffix, "Single_Au22.root", "Au22", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_dummy, suffix, "Single_Dummy.root", "Dummy", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_cnat, suffix, "Single_C.root", "C", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_empty, suffix, "Single_E.root", "E", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_sinat, suffix, "Single_Sinat.root", "Sinat", "RECREATE");
	a->ProcessListOfRuns_Single(prefix, runlist_sinat_good, suffix, "Single_Sinatgood.root", "Sinatgood", "RECREATE");
	
	/*
    a->SetPriorCut(kC6D6, "PulseIntensity>1e12");
    a->SetPriorCut(kC6D6, "tflash>10000");

    a->SetTgWindow(kC6D6,10000,15000);
    
    
    a->SetNewCutsAmp_all(kC6D6, 1800, 50000);
    a->ProcessListOfRuns_Sum(prefix, runlist_30si, suffix, "Sum_30Si_hithresh.root", "Si", "RECREATE");
    */
	return 0;
}

Attachment 2: Process_Si_EAR2.C
/// 23.6.23, 9:30 edit CLW - process also other runlists

// g++ -Wall -O3 -g `root-config --cflags --ldflags --glibs` Process_Si_EAR2.C -o Process_Si_EAR2 && ./Process_Si_EAR2

// includes header, and source only in compiled script
#include "/afs/cern.ch/work/r/rmucciol/public/TTOFSort/TTOFSort_nTOF.h"
#ifndef __CINT__
#include "/afs/cern.ch/work/r/rmucciol/public/TTOFSort/TTOFSort_nTOF.cxx"
#endif
// --------------------------------------------------------------------------
//
//
//
// --------------------------------------------------------------------------	

Double_t a2e_c6d61(Double_t x) {  // from amplitude (channel) to MeV
   return (4.9826533509E-02 + 1.6440658945E-05 * x - 1.0434771608E-12 * x * x);
}
Double_t a2e_c6d62(Double_t x) {  // from amplitude (channel) to MeV
   return (3.4169825864E-02 + 1.4076790089E-05 * x - 7.9765434038E-13 * x * x);
}
Double_t a2e_c6d63(Double_t x) {  // from amplitude (channel) to MeV
   return (3.9177392253E-02 + 1.7015644773E-05 * x - 4.0083807516E-13 * x * x);
}
Double_t a2e_c6d64(Double_t x) {  // from amplitude (channel) to MeV
   return (4.1835244811E-02 + 1.0673010868E-05 * x - 5.3279014370E-14 * x * x);
}

Double_t wf(Double_t x) {
  return (0.468282 + 36.0785 * x + 9.54532 * x * x + 0.202353 * x * x * x - 0.0352043 * x * x * x * x);
}
/*
 First calibrations
Double_t a2e_sted1(Double_t x) {
	return (6.25345e-02 + 3.04647e-03 * x);
}
Double_t a2e_sted2(Double_t x) {
	return (6.41447e-02 + 3.62458e-03 * x);
}
Double_t a2e_sted3(Double_t x) {
	return (4.83878e-02 + 3.19258e-03 * x);
}
Double_t a2e_sted4(Double_t x) {
	return (5.72867e-02 + 3.85617e-03 * x);
}
Double_t a2e_sted5(Double_t x) {
	return (4.61653e-02 + 3.09576e-03 * x);
}
Double_t a2e_sted6(Double_t x) {
	return (6.01178e-02 + 3.25993e-03 * x);
}
Double_t a2e_sted7(Double_t x) {
	return (5.37046e-02 + 3.19335e-03 * x);
}
Double_t a2e_sted8(Double_t x) {
	return (5.37046e-02 + 3.19335e-03 * x);
}
*/
/*
Double_t a2e_sted1(Double_t x) {
	return (6.88457E-02+ 3.07383E-03* x);
}
Double_t a2e_sted2(Double_t x) {
	return (6.30046E-02+ 3.64816E-03* x);
}
Double_t a2e_sted3(Double_t x) {
	return (6.16885E-02+ 3.21011E-03* x);
}
Double_t a2e_sted4(Double_t x) {
	return (5.76290E-02+ 3.91348E-03* x);
}
Double_t a2e_sted5(Double_t x) {
	return (5.48915E-02+ 3.12774E-03* x);
}
Double_t a2e_sted6(Double_t x) {
	return (6.94109E-02+ 3.30446E-03* x);
}
Double_t a2e_sted7(Double_t x) {
	return (7.06719E-02+ 3.18890E-03* x);
}
Double_t a2e_sted8(Double_t x) {
	return (7.06719E-02 + 3.18890E-03 * x);
}
*/
/*
Double_t a2e_sted1(Double_t x) {
	return (8.49569E-02+ 3.02467E-03* x+ 5.01828E-08*x*x);
}
Double_t a2e_sted2(Double_t x) {
	return (6.63359E-02+ 3.62838E-03* x+ 6.36851E-09*x*x);
}
Double_t a2e_sted3(Double_t x) {
	return (6.90246E-02+ 3.17091E-03* x+ 4.80934E-08*x*x);
}
Double_t a2e_sted4(Double_t x) {
	return (5.83187E-02+ 3.93397E-03* x+ 1.38546E-08*x*x);
}
Double_t a2e_sted5(Double_t x) {
	return (7.26372E-02+ 3.03107E-03* x+ 6.15236E-08*x*x);
}
Double_t a2e_sted6(Double_t x) {
	return (6.63090E-02+ 3.34231E-03* x+ -4.15391E-08*x*x);
}
Double_t a2e_sted7(Double_t x) {
	return (7.39348E-02+ 3.21695E-03* x+ -3.38091E-08*x*x);
}
Double_t a2e_sted8(Double_t x) {
	return (7.39348E-02 + 3.21695E-03 * x + -3.38091E-08 * x * x);
}
*/
/*
Double_t a2e_sted1(Double_t x) {
	return (6.12436E-02+ 2.99626E-03* x + 1.45286E-09* x * x);
}
Double_t a2e_sted2(Double_t x) {
	return (3.54473E-02+ 3.66036E-03* x + -1.02808E-07* x * x);
}
Double_t a2e_sted3(Double_t x) {
	return (5.41069E-02+ 3.10199E-03* x + 3.61722E-08* x * x);
}
Double_t a2e_sted4(Double_t x) {
	return (5.82907E-02+ 3.73851E-03* x + 6.26526E-08* x * x);
}
Double_t a2e_sted5(Double_t x) {
	return (5.99435E-02+ 2.93709E-03* x + 7.71012E-08* x * x);
}
Double_t a2e_sted6(Double_t x) {
	return (6.55392E-02+ 3.18712E-03* x + 1.44503E-08* x * x);
}
Double_t a2e_sted7(Double_t x) {
	return (5.01775E-02+ 3.15280E-03* x + -1.29076E-08* x * x);
}
Double_t a2e_sted8(Double_t x) {
	return (7.39348E-02 + 3.21695E-03 * x + -3.38091E-08 * x * x);
}
*/
Double_t a2e_sted1(Double_t x) {
	return (5.67257E-02+ 2.98739E-03* x + 5.53612E-09* x * x);
}
Double_t a2e_sted2(Double_t x) {
	return (3.28429E-02+ 3.65244E-03* x + -1.00906E-07* x * x);
}
Double_t a2e_sted3(Double_t x) {
	return (4.94516E-02+ 3.09050E-03* x + 4.55854E-08* x * x);
}
Double_t a2e_sted4(Double_t x) {
	return (5.28963E-02+ 3.72607E-03* x + 8.07590E-08* x * x);
}
Double_t a2e_sted5(Double_t x) {
	return (5.72747E-02+ 2.91606E-03* x + 9.73475E-08* x * x);
}
Double_t a2e_sted6(Double_t x) {
	return (6.56951E-02+ 3.15511E-03* x + 3.41401E-08* x * x);
}
Double_t a2e_sted7(Double_t x) {
	return (4.66976E-02+ 3.12827E-03* x + 7.80229E-09* x * x);
}
Double_t a2e_sted8(Double_t x) {
	return (7.39348E-02 + 3.21695E-03 * x + -3.38091E-08 * x * x);
}

int main() {

	Char_t prefix[] = "/eos/experiment/ntof/processing/official/done/run";
	Char_t suffix[] = ".root";

	Int_t runlist_cs[] = {216090, 216091, 216104, -1};

	Int_t runlist_cmc[] = { 216162,216160,216164,216165,216166,216167,216168, -1 };

	Int_t runlist_y[] = {216092, 216103, -1}; //Detector mounting changed between runs 216092 and 216103

	Int_t runlist_ambe[] = {216099, 216100, 216101, 216137, 216138, 216139, -1};

	Int_t runlist_au20mm[] = {216108, 216157, -1};

	Int_t runlist_au22mm[] = {216109, 216158, -1};

	Int_t runlist_dummy[] = {216105, 216106, 216107, 216110, 216111, 216112, 216113, 216114, 216115, 216116, 216117, 216118, 216119, 216120, 216121, 216122, -1};

	Int_t runlist_30si[] = {216123, 216124, 216125, 216126, 216127, 216128, 216129, 216130, 216131, 216132, 216133, 216134, 216135, -1};
	
	Int_t runlist_sinat[] = {216159, 216160,216161,216169,216170,216171,216172,216173, -1};
	
	Int_t runlist_amb[] = { 216203,216206,216206,216209,216212,216220,216222,216223,216228,216250,216251,216252,216253,216254,216255,216261,216265,216269,216270,216286,216287,216288,216295,216296,216297,216301,216302,216303,216306,216307,-1 };
	
	TTOFSort *a = new TTOFSort();

	a->AddDetector(kC6D6, 2);
	//a->SetNewBinParsA(kC6D6, 0.0, 6500, 6500000.0);
	//a->SetNewBinParsT(kC6D6, -10.0, 2.0, 1e3, 5000, 1e9); //Double the nbins (10k here becomes 20k bpd spec)

	a->AddDetector(kSTED, 8);
	a->AddDetector(kSILI, 4);
	a->AddDetector(kPKUP, 1);
	a->PrintSettings();
	a->SetNewFixedDeadtime(kSTED, 30.0);//fixed deadtime of 30 ns
	a->SetNewCoincidencetime(kSTED, 30.0);//Coincidences between 30 ns
	a->SetNewFixedDeadtime(kC6D6, 50.0);//fixed deadtime of 30 ns
	a->SetNewCoincidencetime(kC6D6, 50.0);//Coincidences between 30 ns

	//a->SetNewVariableNames_amplitude(kSILI, "amp");
	a->SetNewVariableNames_amplitude(kC6D6, "amp");
	a->SetNewVariableNames_amplitude(kSTED, "amp");

	a->SetNewBinParsA(kC6D6, 0.0, 10000, 5000);
	//a->SetNewBinParsA(kSILI, 0.0, 6500, 5000);
	a->SetNewBinParsA(kSTED, 0.0, 10000, 5000);
	//a->SetHandleTgamma(kC6D6, kUsePkup, 0.0);


	a->SetPriorCut(kC6D6, "amp>50");
	a->SetPriorCut(kSTED, "amp>50");
	a->UseCalibration(kSTED, a2e_sted1, a2e_sted2, a2e_sted3, a2e_sted4, a2e_sted5, a2e_sted6, a2e_sted7, a2e_sted8);

	//a->SetNewVariableNames_amplitude(kC6D6, "amp");
	//a->SetNewBinParsA(kC6D6, 0.0, 6500, 70000);
	//a->SetNewCutsAmp_all(kC6D6, 600, 50000);

	//a->UseCalibration(kC6D6, a2e_c6d61, a2e_c6d62, a2e_c6d63, a2e_c6d64);
	//a->SetNewCutsEg(kC6D6, 0.200, 8.0, 0.200, 8.0, 0.200, 8.0, 0.200, 8.0); 

	//a->SetPriorCut(kC6D6, "PulseIntensity>1e12");
	//a->SetNewBinParsA(kSILI, 0.0, 1e4, 1e5);
	//a->SetNewVariableNames_amplitude(kSILI, "amp");
	//a->SetPriorCut(kSILI, "PulseIntensity>1e12"); 
	//a->UseWeightingFunction(kC6D6, wf, wf, wf, wf);


	a->SetPriorCut(kC6D6, "PulseIntensity<1e7");
	a->ProcessListOfRuns_Sum(prefix, runlist_cs, suffix, "EAR2/Sum_Cal.root", "Cs", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_y, suffix, "EAR2/Sum_Cal.root", "Y", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_ambe, suffix, "EAR2/Sum_Cal.root", "AmBe", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_cmc, suffix, "EAR2/Sum_Cal.root", "CmC", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_amb, suffix, "EAR2/Sum_Amb.root", "Amb", "RECREATE");

	//a->ProcessListOfRuns_Single(prefix, runlist_ambe, suffix, "EAR2/Single_Cal.root", "Ambe", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_cs, suffix, "EAR2/Single_Cal.root", "Cs", "UPDATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_y, suffix, "EAR2/Single_Cal.root", "Y", "UPDATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_cmc, suffix, "EAR2/Single_Cal.root", "CmC", "UPDATE");



	/*
	//Deticated pulse
	a->SetPriorCut(kC6D6, "PulseIntensity>5e+12");
	a->SetPriorCut(kSILI, "PulseIntensity>5e+12");
	a->SetPriorCut(kPKUP, "PulseIntensity>5e+12");
	a->SetPriorCut(kSTED, "PulseIntensity>5e+12");

	a->ProcessListOfRuns_Sum(prefix, runlist_30si, suffix, "EAR2/Dedicated_Sum_Beam.root", "Si", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_au20mm, suffix, "EAR2/Dedicated_Sum_Beam.root", "Au20", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_au22mm, suffix, "EAR2/Dedicated_Sum_Beam.root", "Au22", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "EAR2/Dedicated_Sum_Beam.root", "Dummy", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_sinat, suffix, "EAR2/Dedicated_Sum_Beam.root", "Sinat", "UPDATE");

	//parasitic pulse
	a->SetPriorCut(kC6D6, "PulseIntensity>1e+12 && PulseIntensity<5e+12");
	a->SetPriorCut(kSILI, "PulseIntensity>1e+12 && PulseIntensity<5e+12");
	a->SetPriorCut(kPKUP, "PulseIntensity>1e+12 && PulseIntensity<5e+12");
	a->SetPriorCut(kSTED, "PulseIntensity>1e+12 && PulseIntensity<5e+12");

	a->ProcessListOfRuns_Sum(prefix, runlist_30si, suffix, "EAR2/Parasitic_Sum_Beam.root", "Si", "RECREATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_au20mm, suffix, "EAR2/Parasitic_Sum_Beam.root", "Au20", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_au22mm, suffix, "EAR2/Parasitic_Sum_Beam.root", "Au22", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "EAR2/Parasitic_Sum_Beam.root", "Dummy", "UPDATE");
	a->ProcessListOfRuns_Sum(prefix, runlist_sinat, suffix, "EAR2/Parasitic_Sum_Beam.root", "Sinat", "UPDATE");
	*/

	//a->SetPriorCut(kSILI, "PulseIntensity>1e+12");
	//a->SetPriorCut(kPKUP, "PulseIntensity>1e+12");
	//a->SetPriorCut(kSTED, "PulseIntensity>1e+12");
	//a->SetPriorCut(kC6D6, "PulseIntensity>1e+12");

	//a->ProcessListOfRuns_Sum(prefix, runlist_30si, suffix, "EAR2/Sum_Beam.root", "Si", "RECREATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_au20mm, suffix, "EAR2/Sum_Beam.root", "Au20", "UPDATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_au22mm, suffix, "EAR2/Sum_Beam.root", "Au22", "UPDATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_dummy, suffix, "EAR2/Sum_Beam.root", "Dummy", "UPDATE");
	//a->ProcessListOfRuns_Sum(prefix, runlist_sinat, suffix, "EAR2/Sum_Beam.root", "Sinat", "UPDATE");

	//a->ProcessListOfRuns_Single(prefix, runlist_30si, suffix, "EAR2/Single_30Si.root", "Si", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_au20mm, suffix, "EAR2/Single_Au20.root", "Au20", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_au22mm, suffix, "EAR2/Single_Au22.root", "Au22", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_dummy, suffix, "EAR2/Single_Dummy.root", "Dummy", "RECREATE");
	//a->ProcessListOfRuns_Single(prefix, runlist_sinat, suffix, "EAR2/Single_Sinat.root", "Sinat", "RECREATE");
	
	




	return 0;
}

  46   Tue Aug 29 10:32:35 2023 Michael DonnachieEAR1 Parasitic vs Dedicated runs

Below are the histograms of parasitic vs dedicated runs for EAR1. Also included are histograms with ambient background removed which closes the gap between parasitic and dedicated histograms. This was preformed by scaling the ambient by counts by a multiplication of (dedicated or parasitic) bunch number/ambient bunch number. There are no legends but the dedicated counts are in black and parasitic counts in red. Only included are C6D6 1 detectors but the other three detectors were equivelant. 

 

 

Attachment 1: Au22_large_range_ambrem_A.pdf
Au22_large_range_ambrem_A.pdf
Attachment 2: Au22_large_range.pdf
Au22_large_range.pdf
Attachment 3: Dummy_large_range.pdf
Dummy_large_range.pdf
Attachment 4: Si_large_range.pdf
Si_large_range.pdf
Attachment 5: Si_Resonance_ambrem_B.pdf
Si_Resonance_ambrem_B.pdf
Attachment 6: Dummy_large_range_ambrem.pdf
Dummy_large_range_ambrem.pdf
  45   Mon Aug 28 14:07:23 2023 Michael DonnachieEAR2 Experiment vs Simulated Amplitude Spectrums

Attatched are the overlayed compton edges for the calibrated experimental and the GEANT4 simulations. Note p1 and p2 denotes the lower and higher energy compton edges for Yttrium. 

The experimental and simulated histograms are shifted in quite a few of these plots suggesting the calibration was not fully successful. The compton edge for AmBe was difficult to locate and may have contributed to the poor calibration. 

Attachment 1: YP2_STED5_Experiment_vs_Simulated.pdf
YP2_STED5_Experiment_vs_Simulated.pdf
Attachment 2: YP2_STED6_Experiment_vs_Simulated.pdf
YP2_STED6_Experiment_vs_Simulated.pdf
Attachment 3: YP2_STED7_Experiment_vs_Simulated.pdf
YP2_STED7_Experiment_vs_Simulated.pdf
Attachment 4: AmBe_STED1_Experiment_vs_Simulated.pdf
AmBe_STED1_Experiment_vs_Simulated.pdf
Attachment 5: AmBe_STED2_Experiment_vs_Simulated.pdf
AmBe_STED2_Experiment_vs_Simulated.pdf
Attachment 6: AmBe_STED3_Experiment_vs_Simulated.pdf
AmBe_STED3_Experiment_vs_Simulated.pdf
Attachment 7: AmBe_STED4_Experiment_vs_Simulated.pdf
AmBe_STED4_Experiment_vs_Simulated.pdf
Attachment 8: AmBe_STED5_Experiment_vs_Simulated.pdf
AmBe_STED5_Experiment_vs_Simulated.pdf
Attachment 9: AmBe_STED6_Experiment_vs_Simulated.pdf
AmBe_STED6_Experiment_vs_Simulated.pdf
Attachment 10: AmBe_STED7_Experiment_vs_Simulated.pdf
AmBe_STED7_Experiment_vs_Simulated.pdf
Attachment 11: Cs_STED1_Experiment_vs_Simulated.pdf
Cs_STED1_Experiment_vs_Simulated.pdf
Attachment 12: Cs_STED2_Experiment_vs_Simulated.pdf
Cs_STED2_Experiment_vs_Simulated.pdf
Attachment 13: Cs_STED3_Experiment_vs_Simulated.pdf
Cs_STED3_Experiment_vs_Simulated.pdf
Attachment 14: Cs_STED4_Experiment_vs_Simulated.pdf
Cs_STED4_Experiment_vs_Simulated.pdf
Attachment 15: Cs_STED5_Experiment_vs_Simulated.pdf
Cs_STED5_Experiment_vs_Simulated.pdf
Attachment 16: Cs_STED6_Experiment_vs_Simulated.pdf
Cs_STED6_Experiment_vs_Simulated.pdf
Attachment 17: Cs_STED7_Experiment_vs_Simulated.pdf
Cs_STED7_Experiment_vs_Simulated.pdf
Attachment 18: YP1_STED1_Experiment_vs_Simulated.pdf
YP1_STED1_Experiment_vs_Simulated.pdf
Attachment 19: YP1_STED2_Experiment_vs_Simulated.pdf
YP1_STED2_Experiment_vs_Simulated.pdf
Attachment 20: YP1_STED3_Experiment_vs_Simulated.pdf
YP1_STED3_Experiment_vs_Simulated.pdf
Attachment 21: YP1_STED4_Experiment_vs_Simulated.pdf
YP1_STED4_Experiment_vs_Simulated.pdf
Attachment 22: YP1_STED5_Experiment_vs_Simulated.pdf
YP1_STED5_Experiment_vs_Simulated.pdf
Attachment 23: YP1_STED6_Experiment_vs_Simulated.pdf
YP1_STED6_Experiment_vs_Simulated.pdf
Attachment 24: YP1_STED7_Experiment_vs_Simulated.pdf
YP1_STED7_Experiment_vs_Simulated.pdf
Attachment 25: YP2_STED1_Experiment_vs_Simulated.pdf
YP2_STED1_Experiment_vs_Simulated.pdf
Attachment 26: YP2_STED2_Experiment_vs_Simulated.pdf
YP2_STED2_Experiment_vs_Simulated.pdf
Attachment 27: YP2_STED3_Experiment_vs_Simulated.pdf
YP2_STED3_Experiment_vs_Simulated.pdf
Attachment 28: YP2_STED4_Experiment_vs_Simulated.pdf
YP2_STED4_Experiment_vs_Simulated.pdf
  44   Mon Aug 28 12:21:09 2023 Michael DonnachieEAR2 STED Calibration Parameters

Calibration parameters for each STED detector: With function f=p0+p1*x+p2*x*x

Detector

p0 Value  p0 Error p1 Value p1 Error p2 Value p2 Error

STED 1

5.67257E-02
1.26442E-02
2.98739E-03
7.35717E-05
5.53612E-09
6.80573E-08
STED 2
3.28429E-02
8.70646E-03
3.65244E-03
6.73960E-05
-1.00906E-07
7.35018E-08
STED 3
4.94516E-02
9.74176E-03
3.09050E-03
6.48451E-05
4.55854E-08
5.55624E-08
STED 4
5.28963E-02
9.01234E-03
3.72607E-03
7.13115E-05
8.07590E-08
7.71976E-08
STED 5
5.72747E-02
9.19542E-03
2.91606E-03
6.10110E-05
9.73475E-08
5.75051E-08
STED 6
6.56951E-02
7.56334E-03
3.15511E-03
5.22840E-05
3.41401E-08
5.06241E-08
STED 7
4.66976E-02
8.08261E-03
3.12827E-03
5.32355E-05
7.80229E-09
5.79147E-08

A quadratic function was fitted to the reference point channel (from experimental histogram) and reference point energy (from simulation histogram). The reference point 'r' was r=mean+(FWHM/2) for a gaussian fitted to each compton edge. A quadratic function was used as it fitted the higher energy AmBe reference point better than a linear function. This is highlighted by the comparisson of "STED 2 Calibration" and "STED 2 Example Linear Fit Calibration" plots below. The p0 error is quite large and p2 error very large (larger than the parameter value in STED1) - however the parameters are highly correlated which may have inflated the error. 

CmC histograms were not used as the compton edge could not be located. 

For reference the STED 1 correlation matrix:

  p0 p1 p2
p0 1 -0.92473 0.78779
p1 -0.92473 1  -0.91714
p2 0.78779 -0.91714 1

 

Attachment 1: Example_STED2_calibration.pdf
Example_STED2_calibration.pdf
Attachment 2: STED1_calibration.pdf
STED1_calibration.pdf
Attachment 3: STED2_calibration.pdf
STED2_calibration.pdf
Attachment 4: STED3_calibration.pdf
STED3_calibration.pdf
Attachment 5: STED4_calibration.pdf
STED4_calibration.pdf
Attachment 6: STED5_calibration.pdf
STED5_calibration.pdf
Attachment 7: STED6_calibration.pdf
STED6_calibration.pdf
Attachment 8: STED7_calibration.pdf
STED7_calibration.pdf
  43   Fri Aug 4 10:45:05 2023 AnnieZn Plots: Normalised Spectra, Ratio Plots, Integral/Protons vs Cut (all dets)

All plots in the ratios all look pretty contstant. Zn1 for all detectors seems to have some strange spike in the integral, and a dip in the SILI measurements (and therefore in the SILI/PKUP ratio). 

Det1 & Det4 dont look great for the Integral/Proton plots, im planning to make these plots with the PKUP protons and SILI and then comapre all of those errors and ratios that come from those, so we'll see what that comparison brings. 

Nothing has been seperated by dedicated or paracitic beam yet, so those comparisons need to be made too. 

Attachment 1: Norm_spec_zn3_det4_singles.pdf
Norm_spec_zn3_det4_singles.pdf
Attachment 2: Norm_spec_zn3_Det3_singles.pdf
Norm_spec_zn3_Det3_singles.pdf
Attachment 3: Norm_spec_zn3_det2_singles.pdf
Norm_spec_zn3_det2_singles.pdf
Attachment 4: Norm_spec_zn3_det1_singles.pdf
Norm_spec_zn3_det1_singles.pdf
Attachment 5: Norm_spec_zn2_det4_singles.pdf
Norm_spec_zn2_det4_singles.pdf
Attachment 6: Norm_spec_zn2_det3_singles.pdf
Norm_spec_zn2_det3_singles.pdf
Attachment 7: Norm_spec_zn2_det2_singles.pdf
Norm_spec_zn2_det2_singles.pdf
Attachment 8: Norm_spec_zn2_det1_singles.pdf
Norm_spec_zn2_det1_singles.pdf
Attachment 9: Norm_spec_zn1_det4_singles.pdf
Norm_spec_zn1_det4_singles.pdf
Attachment 10: Norm_spec_zn1_det3_singles.pdf
Norm_spec_zn1_det3_singles.pdf
Attachment 11: Norm_spec_zn1_det2_singles.pdf
Norm_spec_zn1_det2_singles.pdf
Attachment 12: Norm_spec_zn1_det1_singles.pdf
Norm_spec_zn1_det1_singles.pdf
Attachment 13: Ratio_plot_zn3_det4.pdf
Ratio_plot_zn3_det4.pdf
Attachment 14: Ratio_plot_zn3_det3.pdf
Ratio_plot_zn3_det3.pdf
Attachment 15: Ratio_plot_zn3_det2.pdf
Ratio_plot_zn3_det2.pdf
Attachment 16: Ratio_plot_zn3_det1.pdf
Ratio_plot_zn3_det1.pdf
Attachment 17: Ratio_plot_zn2_det4.pdf
Ratio_plot_zn2_det4.pdf
Attachment 18: Ratio_plot_zn2_det3.pdf
Ratio_plot_zn2_det3.pdf
Attachment 19: Ratio_plot_zn2_det2.pdf
Ratio_plot_zn2_det2.pdf
Attachment 20: Ratio_plot_zn2_det1.pdf
Ratio_plot_zn2_det1.pdf
Attachment 21: Ratio_plot_zn1_det4.pdf
Ratio_plot_zn1_det4.pdf
Attachment 22: Ratio_plot_zn1_det3.pdf
Ratio_plot_zn1_det3.pdf
Attachment 23: Ratio_plot_zn1_det2.pdf
Ratio_plot_zn1_det2.pdf
Attachment 24: Ratio_plot_zn1_det1.pdf
Ratio_plot_zn1_det1.pdf
Attachment 25: zn_res3_vs_protons.pdf
zn_res3_vs_protons.pdf
Attachment 26: zn_res2_vs_protons.pdf
zn_res2_vs_protons.pdf
Attachment 27: zn_res3_vs_protons.pdf
zn_res3_vs_protons.pdf
  42   Mon Jul 31 12:00:02 2023 Nikolay SosninEAR2 Silicon Samples
Attachment 1: EAR2_30Si.JPG
EAR2_30Si.JPG
Attachment 2: EAR2_Sinat_Closeup.JPG
EAR2_Sinat_Closeup.JPG
Attachment 3: Goodfellow_Sinat_Sample.JPG
Goodfellow_Sinat_Sample.JPG
Attachment 4: Laser_Alignment.JPG
Laser_Alignment.JPG
  41   Fri Jul 28 12:19:10 2023 Michael DonnachieEAR2 consistency checks, PKUP BCT SILI and normalised counts

The EAR2 ratios of BCT/PKUP, BCT/SILI and PKUP/SILI plotted for each run for samples Si, Sinat, Au20, Au22 and Dummy. 

Also included is the normalised counts (counts/BCT) with 7 detectors on one plot (STED8 was ommited).  'counts' for Si was integreated over the Si resonance, for Au it was integrated over the largest resonance. For Dummy and Sinat the counts were integrated over a large range of 1e+4 to 1e+6ns. The Sinat resonance was too small for adequate statistics to only integrate over the resonance hence why a large range was used. The C6D6 normalised counts were not plotted as there seems to be issues with this detector in EAR2. 

 

Attachment 1: Au20_Ratios.pdf
Au20_Ratios.pdf
Attachment 2: Au20_STED_normalised_counts.pdf
Au20_STED_normalised_counts.pdf
Attachment 3: Au22_Ratios.pdf
Au22_Ratios.pdf
Attachment 4: Au22_STED_normalised_counts.pdf
Au22_STED_normalised_counts.pdf
Attachment 5: Dummy_Ratios.pdf
Dummy_Ratios.pdf
Attachment 6: Dummy_STED_normalised_counts.pdf
Dummy_STED_normalised_counts.pdf
Attachment 7: Si_Ratios.pdf
Si_Ratios.pdf
Attachment 8: Si_STED_normalised_counts.pdf
Si_STED_normalised_counts.pdf
Attachment 9: Sinat_Ratios.pdf
Sinat_Ratios.pdf
Attachment 10: Sinat_STED_normalised_counts.pdf
Sinat_STED_normalised_counts.pdf
  40   Fri Jul 28 12:07:33 2023 Michael DonnachieEAR2 C6D6 timeshift issues

There seems to be issues with the EAR2 C6D6 T histograms. For Au the earlier run seems to be shifted for detector 2 compared to the rest. 

For Si plotted is 3 different runs 216123, 216128 and 216135 for both detectors. The histogram is messy but highlights that there is a problem. The single Si resonace should be around 20 000ns and this is only the case for run216128. 

Apologies for no legend on plots. 

Au22
det1 run216158 black
det1 run216109 red
det2 run216158 green
det2 run216109 blue

Au22
det1 run216157 black
det1 run216108 red
det2 run216157 green
det2 run216108 blue
 

Attachment 1: Au20_C6D6_both_det_timeshift.pdf
Au20_C6D6_both_det_timeshift.pdf
Attachment 2: Au22_C6D6_both_det_timeshift.pdf
Au22_C6D6_both_det_timeshift.pdf
Attachment 3: Si30_C6D6_bothdet_3runs.pdf
Si30_C6D6_bothdet_3runs.pdf
  39   Mon Jul 24 10:32:39 2023 Michael DonnachieConsistency Checks BCT PKUP SILI

The EAR1 ratios of BCT/PKUP, BCT/SILI and PKUP/SILI plotted for each run for samples Si, Sinat goodfellow, Au20, Au22, Empty and Dummy. 

Attachment 1: Si_Ratios.pdf
Si_Ratios.pdf
Attachment 2: Au22_Ratios.pdf
Au22_Ratios.pdf
Attachment 3: Au20_Ratios.pdf
Au20_Ratios.pdf
Attachment 4: Dummy_Ratios.pdf
Dummy_Ratios.pdf
Attachment 5: Sinat_Goodfellow_Ratios.pdf
Sinat_Goodfellow_Ratios.pdf
Attachment 6: Empty_Ratios.pdf
Empty_Ratios.pdf
  38   Fri Jul 21 10:45:22 2023 Michael DonnachieConsistency Checks BCT PKUP comparrisons

The ratios for BCT/PKUP for Si, Au20, Au22, Dummy, Empty and Sinat goodfellow have been plotted. Also included is the normalised counts (counts/BCT) with all 4 detectors on one plot. Apologies there is not a legend, however det1 is red, det2 is green, det3 black and det4 blue. 'counts' for Si was integreated over the Si resonance, for Au it was integrated over the largest resonance. For Dummy, Empty and Sinat the counts were integrated over a large range of 1e+5 to 1e+7ns. The Sinat resonance was too small for adequate statistics to only integrate over the resonance hence why a large range was used. 

 

Attachment 1: Au20NormalisedCounts.pdf
Au20NormalisedCounts.pdf
Attachment 2: Au22NormalisedCounts.pdf
Au22NormalisedCounts.pdf
Attachment 3: DummyNormalisedCounts.pdf
DummyNormalisedCounts.pdf
Attachment 4: EmptyNormalisedCounts.pdf
EmptyNormalisedCounts.pdf
Attachment 5: SinatgoodNormalisedCounts.pdf
SinatgoodNormalisedCounts.pdf
Attachment 6: SiNormalisedCounts.pdf
SiNormalisedCounts.pdf
Attachment 7: Sinat_Goodfellow_det1_Detector_Ratios.pdf
Sinat_Goodfellow_det1_Detector_Ratios.pdf
Attachment 8: Au20_det1_Detector_Ratios.pdf
Au20_det1_Detector_Ratios.pdf
Attachment 9: Au22_det1_Detector_Ratios.pdf
Au22_det1_Detector_Ratios.pdf
Attachment 10: Dummy_det1_Detector_Ratios.pdf
Dummy_det1_Detector_Ratios.pdf
Attachment 11: Empty_det1_Detector_Ratios.pdf
Empty_det1_Detector_Ratios.pdf
Attachment 12: Si_det1_Detector_Ratios.pdf
Si_det1_Detector_Ratios.pdf
  37   Mon Jul 17 14:49:16 2023 Nikolay SosninMounted Si-nat Sample

Goodfellow Si-nat mounted at EAR1. First run: 116551

Attachment 1: Sinat_Back.JPG
Sinat_Back.JPG
Attachment 2: Sinat_Front.JPG
Sinat_Front.JPG
Attachment 3: Sinat_Sample.JPG
Sinat_Sample.JPG
  36   Mon Jul 17 12:30:28 2023 Nikolay SosninSi-nat Goodfellow Sample Properties

Goodfellow sample has been deposited on a single Mylar foil and glue is drying.

mass = 2.932 g

diameter = 20.0 mm

thickness = 3.98 mm

Attachment 1: Sinat_Sample_Properties.JPG
Sinat_Sample_Properties.JPG
  35   Mon Jul 17 11:30:54 2023 ClaudiaProperties Silicon powder samples

30Si
Mass: 0.9925(1) g;    Diameter: 22.22(1) mm;    Thickness: 1.77(4) mm;

natSi
Mass: 1.0653(2)g;    Diameter: 19.94(2) mm;    Thickness: 1.91(3) mm;

Mass of sample pre-treatment (sintering ...)

natSi 1.0238 g
30Si:  0.75034 g

  34   Mon Jul 17 10:06:35 2023 Nikolay SosninState of the Union: Campaign Update 17.07.2023

EAR1: Si-nat sample fell off the holder during maintenance (before run 116544), appears intact and undamaged. Placed it back in-beam for further EAR1 measurements and subsequent transfer to EAR2.

EAR2: Replaced DUMMY with 30Si. Photo during alignment and photo of sample in holder attached.

Attachment 1: Sinat_PostFall.JPG
Sinat_PostFall.JPG
Attachment 2: EAR2_30Si_Alignment.JPG
EAR2_30Si_Alignment.JPG
Attachment 3: EAR2_30Si.JPG
EAR2_30Si.JPG
  33   Sat Jul 15 07:33:32 2023 Nikolay Sosnin30Si EAR2

8 sTED + 2 C6D6

C6D6: distance = 14 cm, angle = 135 degrees

sTED horizontal ring, distance for each detector from target = 4.5 cm. sTED labeled 8 in the DAQ is actually sTED #9 at n_TOF (actual sTED #8 showed no signal)

sTED1 809V, sTED2 793V, sTED3 813V, sTED4 779V, sTED5 785V, sTED6 800V, sTED7 791V, sTED8 837V

C6D61 (labeled C6D6_M in HV log) 854V, C6D62 (labeled C6D6_N in HV log) 871V

Attachment 1: C6D6_sTED.JPG
C6D6_sTED.JPG
Attachment 2: sTED_Ring_Cs137.JPG
sTED_Ring_Cs137.JPG
Attachment 3: C6D6_sTED_Side.JPG
C6D6_sTED_Side.JPG
Attachment 4: Beam_Kapton_Setup.JPG
Beam_Kapton_Setup.JPG
Attachment 5: EAR2_Setup2.JPG
EAR2_Setup2.JPG
Attachment 6: EAR2_Setup.JPG
EAR2_Setup.JPG
  32   Thu Jul 13 14:19:37 2023 Claudiadead time 30Si run

Default TTOFSort dead time setting of 30 ns is ok.

Attachment 1: consecutiveau22.pdf
consecutiveau22.pdf
  31   Thu Jul 13 12:27:44 2023 Michael Donnachie, CLWCalibration Parameters

Calibration parameters for each detector:

detector y-intercept (value) y-intercept (error) gradient (value) gradient (error)
1
3.71330E-02
5.54684E-03
2.78468E-04
1.56343E-06
2
1.21071E-02
7.19950E-03
2.82656E-04
1.96751E-06
3
2.74746E-02
4.18331E-03
2.64094E-04
1.33883E-06
4
2.96214E-02
4.61155E-03
2.73633E-04
1.22941E-06

A linear function was fitted to the reference point channel (from experimental histogram) and reference point energy (from simulation histogram). The reference point 'r' was r=mean+(FWHM/2) for a gaussian fitted to each compton edge. 

 

The comparrisons between the calibrated experimental and simulation histograms has been attached. P1 (left) and P2 (right) on the Y88 hisograms indicate whether the histograms were scaled with respect to the leftmost or rightmost compton edge (only to allow easier comparrison). 

Broadening parameters applied to the simulations

float a1 = 0.004947965;
float b1 = 0.005227974;
float a2 = 0.007163802;
float b2 = 0.007549987;
float a3 = 0.001256462;
float b3 = 0.006410511;
float a4 = 0.003907402;
float b4 = 0.004033837;

sigma= sqrt(axE+bxE^2) 

Attachment 1: det1.pdf
det1.pdf
Attachment 2: det2.pdf
det2.pdf
Attachment 3: det3.pdf
det3.pdf
Attachment 4: det4.pdf
det4.pdf
Attachment 5: Ydet2p1.pdf
Ydet2p1.pdf
Attachment 6: Ydet2p2.pdf
Ydet2p2.pdf
Attachment 7: Ydet3p1.pdf
Ydet3p1.pdf
Attachment 8: Ydet3p2.pdf
Ydet3p2.pdf
Attachment 9: Ydet4p1.pdf
Ydet4p1.pdf
Attachment 10: Ydet4p2.pdf
Ydet4p2.pdf
Attachment 11: AmBedet1.pdf
AmBedet1.pdf
Attachment 12: AmBedet2.pdf
AmBedet2.pdf
Attachment 13: AmBedet3.pdf
AmBedet3.pdf
Attachment 14: AmBedet4.pdf
AmBedet4.pdf
Attachment 15: CmCdet1.pdf
CmCdet1.pdf
Attachment 16: CmCdet2.pdf
CmCdet2.pdf
Attachment 17: CmCdet3.pdf
CmCdet3.pdf
Attachment 18: CmCdet4.pdf
CmCdet4.pdf
Attachment 19: Csdet1.pdf
Csdet1.pdf
Attachment 20: Csdet2.pdf
Csdet2.pdf
Attachment 21: Csdet3.pdf
Csdet3.pdf
Attachment 22: Csdet4.pdf
Csdet4.pdf
Attachment 23: Ydet1p1.pdf
Ydet1p1.pdf
Attachment 24: Ydet1p2.pdf
Ydet1p2.pdf
  30   Thu Jun 29 09:21:13 2023 AnnieInfo on Samples

Both Au samples (20mm and 22mm) are single mylar.

Both Si30 (22mm) and natSi (20mm) are double mylar.

Empty is single mylar ONLY

Dummy is double mylar + glue 

Attachment 1: IMG_2242.JPG
IMG_2242.JPG
Attachment 2: IMG_2248.JPG
IMG_2248.JPG
Attachment 3: IMG_2247.JPG
IMG_2247.JPG
Attachment 4: IMG_2246.JPG
IMG_2246.JPG
  29   Thu Jun 22 10:37:39 2023 AnnieGold 22mm Sample Images

New 22mm sample compared to old 20mm sample used at the beginning of the campaign + picture of dummy target in the setup.

Attachment 1: IMG_2187.JPG
IMG_2187.JPG
Attachment 2: IMG_2186.JPG
IMG_2186.JPG
Attachment 3: IMG_2185.JPG
IMG_2185.JPG
  28   Thu Jun 15 09:57:01 2023 AnnieSi Set Up

Si Set up images and documentation.

Detector 1 - C6D6D: Distance= 9 cm, Angle= 135 deg relative to BL (check set up pdf for drawing if unsure), Voltage= 1550 V

Detector 2 - C6D6E: Distance= 9 cm, Angle= 135 deg relative to BL, Voltage= 1590 V

Detector 3 - C6D6H: Distance= 9 cm, Angle= 135 deg relative to BL, Voltage= 1450 V

Detector 4 - C6D6L: Distance= 9 cm, Angle= 135 deg relative to BL, Voltage= 1460 V

 

Note: Voltages were increased by 30V after the first few runs, these voltages are titled as "new voltages" in the DAQ when they were being tried out, and are now the final voltages.

 

 

Attachment 1: IMG_2101.JPG
IMG_2101.JPG
Attachment 2: IMG_2103.JPG
IMG_2103.JPG
Attachment 3: IMG_2109.JPG
IMG_2109.JPG
Attachment 4: IMG_2114.JPG
IMG_2114.JPG
Attachment 5: IMG_2116.JPG
IMG_2116.JPG
Attachment 6: IMG_2122.JPG
IMG_2122.JPG
Attachment 7: IMG_2122.JPG
IMG_2122.JPG
Attachment 8: IMG_2131.JPG
IMG_2131.JPG
Attachment 9: IMG_2132.JPG
IMG_2132.JPG
Attachment 10: IMG_2124.JPG
IMG_2124.JPG
Attachment 11: IMG_2120.JPG
IMG_2120.JPG
Attachment 12: Si_Set_Up_final.pdf
Si_Set_Up_final.pdf Si_Set_Up_final.pdf Si_Set_Up_final.pdf Si_Set_Up_final.pdf Si_Set_Up_final.pdf Si_Set_Up_final.pdf
  27   Tue Apr 11 14:07:43 2023 ClaudiaPhotos of the Zn68 measurement setup

Photos of the  68Zn(n,gamma) measuremement setup at n_TOF EAR-1.

Attachment 1: IMG_20180409_204846530_LL.jpg
IMG_20180409_204846530_LL.jpg
Attachment 2: IMG_20180409_204854032_LL.jpg
IMG_20180409_204854032_LL.jpg
Attachment 3: IMG_20180410_180042179_LL.jpg
IMG_20180410_180042179_LL.jpg
Attachment 4: IMG_20180411_140834699_LL.jpg
IMG_20180411_140834699_LL.jpg
Attachment 5: Zn68measurement.jpg
Zn68measurement.jpg
  26   Fri Jul 29 17:21:47 2022 RaganEnriched Si-30

Attached are the pictures of enriched Si-30 metal pieces.

Attachment 1: IMG_2692.jpg
IMG_2692.jpg
Attachment 2: IMG_2693.jpg
IMG_2693.jpg
  25   Sat Mar 19 17:29:43 2022 Nikolay SosninAl26 Experimental Inventory at n_TOF

Three aluminium crates contain 26Al(n, alpha) kit from EAR2, and was in the barracks (building 6547) near detector lab by EAR1 entrance. A list is attached and photos can be found on Dropbox:

https://www.dropbox.com/sh/68k1xove2zr1bmj/AADKvN8wR_Ia2EwZMOXZqdMCa?dl=0

Attachment 1: Al26_Inventory.pdf
Al26_Inventory.pdf Al26_Inventory.pdf Al26_Inventory.pdf
  23   Mon Jan 25 16:11:54 2021 Nikolay Sosnin25.01.2021: Cross-section Calculation Update
Attachment 1: Unresolved_Normalization_1.pptx
  22   Mon Oct 5 15:01:04 2020 RGMonday meeting slides: 05 Oct

Summary of work done so far.

Attachment 1: 2020_10_05_SummarySoFar.pdf
2020_10_05_SummarySoFar.pdf 2020_10_05_SummarySoFar.pdf 2020_10_05_SummarySoFar.pdf 2020_10_05_SummarySoFar.pdf 2020_10_05_SummarySoFar.pdf 2020_10_05_SummarySoFar.pdf 2020_10_05_SummarySoFar.pdf 2020_10_05_SummarySoFar.pdf
  21   Mon Oct 5 14:54:55 2020 Nikolay SosninOverall Progress: Monday Meeting 05.10.2020
Attachment 1: Selenium_Data.pptx
  20   Fri Oct 2 14:01:24 2020 RGMonday meeting slides: 28 Sep

Further investigation into dedicated and parasitic discrepancy.

Attachment 1: 2020_09_28.pdf
2020_09_28.pdf 2020_09_28.pdf 2020_09_28.pdf 2020_09_28.pdf 2020_09_28.pdf
  19   Fri Oct 2 13:59:05 2020 RGMonday meeting slides: 21 Sep

Dedicated and parasitic discrepancy (Au 5eV resonance plateau) - quantified.

Flux and E_exc numalisation after sum WF.

Attachment 1: 2020_09_21.pdf
2020_09_21.pdf 2020_09_21.pdf 2020_09_21.pdf 2020_09_21.pdf 2020_09_21.pdf
  18   Fri Oct 2 13:55:52 2020 RGMonday meeting slides: 14 Sep

Discrepancy between dedicated and parasitic pulses histograms in the 5eV gold resonance plateau region.

Corrected tof to En conversion.

E_excitation and flux normalisation of yield.

Attachment 1: 2020_09_14.pdf
2020_09_14.pdf 2020_09_14.pdf 2020_09_14.pdf 2020_09_14.pdf 2020_09_14.pdf 2020_09_14.pdf 2020_09_14.pdf 2020_09_14.pdf
  17   Fri Oct 2 13:47:59 2020 RGMonday meeting slides: 07 Sep

Proton consistency test (BCT, SiMon, weighted, unweigted, dedicated, parasitic) - Au cal1 and Se78
BG subtraction
TOF to En conversion
 

Attachment 1: 2020_09_07.pdf
2020_09_07.pdf 2020_09_07.pdf 2020_09_07.pdf 2020_09_07.pdf 2020_09_07.pdf 2020_09_07.pdf 2020_09_07.pdf 2020_09_07.pdf
  16   Tue Sep 29 18:36:03 2020 Nikolay SosninSAMMY Fits to Known Se77 Resonances: Meeting 28.09.2020
Attachment 1: SAMMY_Fits_Se77.pptx
  15   Mon Sep 14 13:47:26 2020 Nikolay SosninSummed WF: Monday Meeting 14.09.2020
Attachment 1: Sum_Spectra.pptx
  14   Mon Sep 7 13:57:28 2020 Nikolay SosninSAMMY Fits Au197: Monday Meeting 07.08.2020
Attachment 1: SAMMY_Gold.pptx
  13   Fri Aug 7 10:57:10 2020 RuchiMonday meeting slides: 03 Aug
Attachment 1: 2020_08_03.pdf
2020_08_03.pdf 2020_08_03.pdf 2020_08_03.pdf 2020_08_03.pdf 2020_08_03.pdf 2020_08_03.pdf 2020_08_03.pdf 2020_08_03.pdf
  12   Fri Aug 7 10:56:03 2020 RuchiMonday meeting slides: 27 Jul
Attachment 1: 2020_07_27.pdf
2020_07_27.pdf 2020_07_27.pdf 2020_07_27.pdf 2020_07_27.pdf 2020_07_27.pdf 2020_07_27.pdf 2020_07_27.pdf 2020_07_27.pdf
  11   Fri Aug 7 10:55:43 2020 RuchiMonday meeting slides: 20 Jul
Attachment 1: 2020_07_20.pdf
2020_07_20.pdf 2020_07_20.pdf 2020_07_20.pdf 2020_07_20.pdf
  10   Fri Aug 7 10:53:14 2020 RuchiMonday meeting slides: 13 Jul
Attachment 1: 2020_07_13.pdf
2020_07_13.pdf 2020_07_13.pdf 2020_07_13.pdf 2020_07_13.pdf 2020_07_13.pdf 2020_07_13.pdf 2020_07_13.pdf
  9   Fri Aug 7 10:50:57 2020 RuchiMonday meeting slides: 06 Jul
Attachment 1: 2020_07_06.pdf
2020_07_06.pdf 2020_07_06.pdf 2020_07_06.pdf 2020_07_06.pdf 2020_07_06.pdf 2020_07_06.pdf 2020_07_06.pdf 2020_07_06.pdf
  8   Fri Aug 7 10:39:18 2020 RuchiTTOFSort processing macro and files path

/eos/user/r/rugarg/public/2017_10_ng_ZnSe/

Latest 4 processing scripts:
1. process_runs_Au1_Jul20.C = Au runs (Se78 part), empty holder runs (Se78 part), and beam-off runs (Se78 part) processed with Au weighting function and set1 of calibration parameters.
2. process_runs_Au2_Jul20.C = Au runs (Se77 part), empty holder runs (Se77 part), and beam-off runs (Se77 part) processed with Au weighting function and set2 of calibration parameters.
3. process_runs_Se78_Jul20.C = Se78 runs, empty holder runs, beam-off runs, C runs, and filter runs processed with Se78 weighting function and set1 of calibration parameters.
4. process_runs_Se77_Jul20.C = Se77 runs, empty holder runs, beam-off runs, and filter runs processed with Se77 weighting function and set2 of calibration parameters.

  7   Mon Aug 3 14:27:18 2020 Nikolay SosninDead-time and BG Subtraction Meeting Slides

My TTOFSort macro is located in

/afs/cern.ch/work/n/nsosnin/public/C6D6_Calibration/Calibration_Data/Calibrator.C

Attachment 1: Subtracted_Spectra.pptx
Attachment 2: Deadtimes.pptx
  6   Mon Jul 27 17:40:41 2020 Nikolay SosninMeeting Slides (Calibrations + WFs)
Attachment 1: Broadening_Round1.pptx
Attachment 2: Weighting_Gold.pptx
  5   Fri Jul 3 14:01:38 2020 ClaudiaLink to Ruchi's list of runs + description

 https://docs.google.com/spreadsheets/d/1W1T2rC10UtOtrAaT8-ZAKFvX70v2PwDk_4-goYL-brI/edit?usp=sharing

  4   Mon Oct 28 16:15:32 2019 RuchiZn68 measurement setup
Attachment 1: IMG_3009.JPG
IMG_3009.JPG
Attachment 2: IMG_3010.JPG
IMG_3010.JPG
  3   Fri Nov 3 15:06:51 2017 ClaudiaMeasurement Schedule updated
Attachment 1: measurementplan_new.pdf
measurementplan_new.pdf
  2   Fri Nov 3 11:22:43 2017 ClaudiaDetector Configuration

Distance Sample to Detector: Det1: ~10.5 cm, Det2: 11 cm, Det3: 11 cm, Det4: 11 cm

 

Attachment 1: fig1.jpg
fig1.jpg
Attachment 2: fig2.jpg
fig2.jpg
Attachment 3: fig3.jpg
fig3.jpg
  1   Fri Nov 3 11:19:53 2017 ClaudiaSample Preparation

77Se: m=0.9916 g; D= 20 mm

OLD: 77Se: m=0.919 g according to ntofdaq page. D~ 20 mm NEEDS TO BE CONFIRMED

78Se: m=1.989/pm0.001 g; D=20.09mm; t~1.7 mm

68Zn: m=1.998/pm0.001 g; D=20.02mm; t~1.39 mm

Attachment 1: Se-77.pdf
Se-77.pdf
Attachment 2: Se-78.pdf
Se-78.pdf
Attachment 3: Zn-68.pdf
Zn-68.pdf
ELOG V3.1.4-unknown